|
[1] S. Armato, M. Giger, and H. MacMahon. Automated lung segmentation in digitized posteroanterior chest radiographs. Academic Radiology, 4:245—255, 1998. [2] M. S. Brown, M. F. McNitt-Gray, N. J. Mankovich, J. G. Goldin, J. Hiller, L. S. Wilson, and D. R. Aberle. Method for segmenting chest ct image data using an anatomical model: Preliminary results. IEEE Transactions on Medical Imaging, 16:828—839, December 1997. [3] F. Carrascal, J. Carreira, M. Souto, P. Tahoces, L. Gomez, and J. Vidal. Automatic calculation of total lung capacity from automatically traced lung boundaries in posteroanterior and lateral digital chest radiographs. Medical Physics, 25:1118—1131, 1998. [4] J. Duryea and J. Boone. A fully automatic algorithm for the segmentation of lung elds in digital chest radiographic images. Medical Physics, 22:183—191, 1995. [5] Jun-Feng Guo, Yuan-Long Cai, and Yu-Ping Wang. Morphology-based interpolation for 3d medical image reconstruction. Computerized Medical Imaging and Graphics, 19:267—279, 1995. [6] C. I. Henschke, D. I. McCauley, D. F. Yanlkelevitz, D. P. Naidich, G. McGuinness, O. S. Miettinen, D. M. Libby, M. W. Pasmantier, J. Koizumi, N. K. Altorki, and J.P. Smith. Early lung cancer action project : overall design and ndings from baseline screening. The LANCET, 354:99—105, July 1999. [7] Shiying Hu and Eric A. Homan. Automic lung segmentation for accurate quantitation of volumetric x-ray ct images. IEEE Transactions on Medical Imaging, 20:490—498, June 2001. [8] K. Kanazawa, Y. Kawata, and N. Niki. Computer-aided diagnosis for pulmonary nodules based on helical ct images. Computerized Medical Image and Graphics, pages 157—167, 1998. [9] Y. Kato, K. Yamada, F. Oshita, I. Nomura, K. Noda, T. Yamagata, and M. Tajiri. Helical thin-section ct high-resolution image analysis of resected peripheral adenocarcinomas of the lung less than 1 cm in diameter. Lung Cancer, 18:214, August 1997. [10] Y. Kawata, N. Niki, H. Ohmatsu, R. Kakinuma, K. Eguchi, and N. Moriyama. Quantitative surface characterization of pulmonary nodules based on thin-section ct images. IEEE Trans. Nuclear Science, 45:2132—2138, 1998. [11] M. Kubo, N. Niki, S. Nakagawa, K. Eguchi, and M. Kaneko. Extraction algorithm of pulmonary ssures from thin-section ct images based on linear feature detector method. IEEE Transactions on Nuclear science, 46:2128—2133, December 1999. [12] Yongbum Lee and Takeshi Hara. Automated detection of pulmonary nodules in helical ct images based on an improved template-matching technique. IEEE Transactions on Medical Image, pages 557—563, July 2001. [13] Chin-Teng Lin and C.S. George Lee. Neural Fuzzy Systems. Prentice Hall P T R, New York, 1996. [14] Jyh-Shyan Lin and Panos A. Ligomenides. A hybrid neural digital computer-aided diagnosis system for lung nodule detection on digitized chest radiographs. Seventh Annual IEEE Symposium on Computer-Based Medical System, pages 207—212, 1994. [15] T. Okumura, T. Miwa, J. Kato, S. Yamamoto, M. Matsumoto, Y. Tateno, T. Iinuma, and T. Matsumoto. Variable n-quoit lter applied for automatic detection of lung cancer by x-ray ct. in Proc. CAR’98, pages 242—247, 1998. [16] M.G. Penedo, M.J. Carreira, A.Mosquera, and D. Cabello. Computeraided diagnosis: A neural-network-based approach to lung nodule detection. IEEE Transactions on Medical Imaging, 17:999, December 1998. [17] T. Tozaki, Y. Kawata, N. Niki, H. Ohmatsu, and R. Kakinuma. Pulmonary organs analysis for dierential diagnosis based on thoracic thinsection ct images. International conference on image processing, pages 1332—1336, 1998. [18] Bram van Ginneken, Bart M. ter Haar Romeny, and Max A. Viergever. Computer-aided diagnosis in chest radiography: A survey. IEEE Transactions on Medical Image, 20:1228—1241, December 2001. [19] X.W. Xu, S. Katsuragawa, K. Ashizawa, H. MacMahon, and K.Doi. Analysis of image features of histograms of edge gradient for false positive reduction in lung nodule detection in chest radiographs. Proc SPIE, page 3338, 1998.
|