跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.110) 您好!臺灣時間:2025/09/27 19:40
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李季芬
研究生(外文):Chi-Fen Lee
論文名稱:外加電壓及表面電傾效應對FLC配向之影響研究
論文名稱(外文):The Study of Electric Field and Surface Electro-clinic Effect on the Alignment of the Ferroelectric Liquid Crystal Cell with N*-SmC* Phase Transition
指導教授:陳殿榮吳俊傑吳俊傑引用關係
口試委員:徐芝珊吳勛隆
口試日期:2007-06-27
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:光電工程系研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:87
中文關鍵詞:表面電傾效應配向強誘電性液晶相轉移
外文關鍵詞:surface electro-clinic effectalignmentferroelectric liquid crystalN*-SmC*
相關次數:
  • 被引用被引用:0
  • 點閱點閱:165
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
具有N*-SmC*相轉移順序的液晶,在形成SmC*相時,假設上下配向膜的條件相同,液晶分子會有兩種極化方向的可能性。同時由於表面電傾效應的影響,不同極化方向的表面液晶分子會以rubbing方向為中心,往相反方向夾一偏離的角度α。因此造成兩種不同軸向的區塊進而產生缺陷。為了解決配向不均勻的問題,我們利用在N*-SmC*相轉移的過程,外加一電場(直流和交流),經由改變電場的振幅,分析偏向角α與配向的關係,並提出兩個均勻配向的模型。
在外加直流電場實驗中,當直流電場大於一臨界電壓時,液晶分子可以感應相同極性的Ps方向而形成單一區塊的排列。並且,隨著直流電場的增加,偏向角α也會跟著增加。另外,當改變電場極性時,偏向角的方向和液晶分子的Ps方向也會跟著增加。根據直流電場實驗,當在N*-SmC*相轉移的過程施加交流電場,液晶分子感應兩個極性的電壓,因此會產生兩個相反方向的偏向角且由於Ps的方向相反,液晶層的傾斜方向相反,造成缺陷的產生。然而,從實驗中發現,當外加電壓振幅足夠大,使得偏離角α等於1/2的圓錐角,層的正切方向會與rubbing方向平行,因此缺陷消失形成均勻配向。
In the ferroelectric liquid crystal(FLC) material with N*-SmC* phase sequence, two types of domain with opposite polarization direction randomly formed in the SmC* phase. The director of the molecules in each domain deviate a fixed angle in opposite side from the rubbing direction due to the surface electroclinic effect. Therefore, horizontal chevron defects form and then, the alignment in this kind of material is not uniform. In this paper, we investigated the relationship between the alignment and the deviation angle in the ferroelectric liquid crystal cell by applying an electric field (direct current or alternating current) during N*-SmC* phase transition. The deviation angle is denoted as the angle between the molecular axis and the rubbing direction.
In the case of the direct current(DC) electric field applied to the FLC cell during N*-SmC* phase transition, when the amplitude of the electric field is sufficiently larger then a threshold voltage, the molecules can be induced the same polarity and make the same deviation angle from the rubbing direction. As a result, the FLC cell can form a mono-domain alignment. By increasing the amplitude, the angle between molecular axis and rubbing direction become larger. When the polarity of the DC electric field changes the direction of the deviation angle and the polarity of the molecules will be changed.
According to the result of the condition of DC electric field, while applying alternating current(AC) electric field with a fixed frequency to the FLC cell during N*-SmC* phase transition, two types of domain with opposite deviation angle and polarization sign form in the SmC* phase. Because two types of domain coexist in the cell, the layer normal of two domains tilt in opposite direction with respect to the rubbing direction and form horizontal chevron defects. However, when the deviation angle is equal to half of the apparent angle of the FLC material, the layer normals of the two domains are parallel to the rubbing direction and a uniform dark state can be observed under crossed polarizers.
目 錄

中文摘要 i
英文摘要 ii
誌謝 iv
目錄 v
表目錄 vii
圖目錄 viii
第一章 緒言 1
1.1液晶顯示器簡介 1
1.2研究動機 2
第二章 液晶簡介 3
2.1液晶的分類 4
2.1.1 依液晶的形成方法分類 5
2.2.2 依液晶分子排列分類 6
2.2.2.1 桿狀液晶 6
2.2.2.2 盤狀液晶 11
2.2.3 液晶分子量分類 12
第三章 強誘電性液晶 13
3.1強誘電性液晶的化學性質 13
3.2強誘電性液晶的物理性質 14
3.2.1 自發分極(Spontaneous Polarization; Ps) 14
3.2.2 螺旋距(Helical pitch) 15
3.2.3 圓錐角(Cone angle) 16
3.2.4 層狀幾何結構 17
3.3強誘電性液晶的發展 20
3.3.1 表面穩定型強誘電性液晶(SSFLC) 24
3.3.2 灰階顯示強誘電性液晶 24
3.3.2.1 V型強誘電性液晶 24
3.3.2.2 Half-V型強誘電性液晶 28
3.3.2.3 Twist FLC 29
3.2.2.4 PS (Polymer Stabilized) FLC 30
3.3.2.5 VC (Vertical Configuration) FLC 33
3.2.6 總結
第四章 實驗理論與實驗方法 35
4.1表面電傾效應(Surface Electro-clinic Effect) 35
4.2實驗模型 39
4.3實驗方法 42
4.4實驗參數 42
4.4.1 FLC材料 42
4.4.2 實驗樣品製作 42
4.5實驗量測:α角量測 47
第五章 實驗結果與討論 49
5.1於N*-SmC*相轉移過程施加電場 49
5.1.1 使用頻率為0.01Hz的方波交流電場配向 49
5.1.2 使用頻率為50Hz的方波交流電場配向 62
5.2表面電傾效應 76
5.2.1 改變rubbing次數 76
5.2.2 上下基板rubbing次數不等 79
5.2.3 上基板無rubbing,改變下基板rubbing的次數 81
5.2.4 上基板為素ITO玻璃,改變下基板rubbing的次數 82
第六章 結論 83
參考文獻 84
參考文獻

[1] J. Xue and N. A .Clark, "Surface Electroclinic Effect in Chiral Smectic-A Liquid Crystals ", Rev.Lett,64,3(1990)
[2] W. Chen, Y. Ouchi, T. Moses, and Y. R. Shen, “Surface electroclinic effect on the layer structure of a FLC,” Ph. Rev. Lett. 68, 10 (1992).
[3] A. M. Biradar, S. S. Bawa, Kanchan Saxena and Subhas Chandra, “Surface electroclinic effect in ferroelectric liquid crystal”, J. Phys. II France 3 (1993) 1787-1793
[4] Mark Spector, Brian Weslowski, R. Shashidhar, “Surface Electroclinic Effect in a Smectic-A Liquid Crystal”, Molecular Crystals and Liquid Crystals, 412, 435,(2004)
[5] M. S. Spector, S. K. Prasad, B. T. Weslowski, R. D. Kamien, J. V. Selinger, B. R. Ratna, and R. Shashidhar, “Chiral twisting of a smectic-A liquid crystal”, Ph. Rev. E, 61, 4 (2000).
[6] Sanseong Seomun, Vitaly P. Panov, Jagdish K. Vij, “The Study of the Surface Electroclinic Effect Using Different Aligning Materials”, Ferroelectrics, 278, 151(2002)
[7] Pawel Perkowski, Kenji I. Arai, Tetsuya Miyashita, and Tatsuo Uchida, “Two-domain texture obtained in FLC cell showing V-shaped switching and surface electroclinic effect”, Proceedings of SPIE, 4759, pp. 172-177(2002)
[8] Joseph E. Maclennan,1 David Muller,1 Ren-Fan Shao,1 David Coleman,1 Daniel J. Dyer,2 David M. Walba,2 and Noel A. Clark, “Field control of the surface electroclinic effect in chiral smectic-A liquid crystals, Phys. Rev. E 69, 061716 (2004)
[9] 劉瑞祥 譯,液晶之基礎與應用,國立編譯館出版,2002。
[10] Sven T. Lagerwall, M. A. Osipor, S. A. Pikin, Ferroelectric and
Antiferroelectric Liquid Crystals.
[11] W. L. McMillan, Phys. Rev. A8 (1973) 1921
[12] R. B. Meyer, L. Liebert, L. Strzelecki and P. Keller, J. Physique. Lett. 36 (1975) 69.
[13] S. T. Lagerwall and I. Dahl, Mol. Cryst. Liq. Cryst., 114, 151 (1984)
[14] Artur Adamski, Thresholdless Switching in Ferro and Anitiferro-electric Liquid Crystal Display, Ph.D. Thesis, Gent University, Dutch, 2004
[15] Chenhui Wang, Control of Layer Defects in Smectic C* Ferroelectric Liquid Crystal Devices, Ph.D. Thesis, Kent State University, U.S.A, 2003
[16] Y. Iwasaki, K. Yoshino, T. Uemoto and Y. Inuishi, Jpn. J. Appl. Phys.18 (1979)
1261.
[17] N. A. Clark and S. T. Lagerwall, Appl. Phys. Lett. 36 (1980) 899.
[18] D. Coleman, D. Mueller, N. A. Clark, J. E. Maclennan, R.-F. Shao and S.
Bardon:Phys. Rev. Lett. 91 (2003) 175505.
[19] S. Inui, N, Iimura, T. Suzuki, H. Iwane, K. Miyachi, Y. Takanishi and A. Fukuda, j. Mater. Chem. 6 (1996) 671.
[20] P.Rudquist, J. P. F. Lagerwall, M. Buivydas, F. Gouda, S. T. Lagerwall, N. A. Clark, J. E. Maclennan, R. Shao, D. A. Coleman, S. Bardon, T. Bellini, D. R. Link, G. Natale, M. A. Glaser, D. M. Walba, M. D. Wand and X. H. Chen, J.
Mater. Chem. 9 (1999) 1257.
[21] Y. Asao, T. Togano, M. Terada, T. Moriyama, S. Nakamura and J. Iba, Jpn. J.
Appl. Phys.38 (1999) 5977.
[22] Tatsunosuke Matsui, Keizo Nakayama, Masanori Ozaki, and Katsumi Yoshino “Photoinduced layer alignment control in ferroelectric liquid crystalwith N*– C* phase transition doped with photochromic dye” Appl. Phys. Lett. ,76 ,1228.
[23] J. S. Patel. Appl. Phys. Lett. 60, 280 (1992).
[24] V. Pertuis and J. S. Patel. Ferroelectrics 149, 1095 (1992).
[25] Y. Miyazaki, H. Furue, T. Takahashi, M. Shikada, and S. Kobayashi, ”Mol. Cryst. Liq. Cryst.” 364, 491 ~2001!.
[26] S. Kataoka, T. Taguchi, Y. Iimura, S. Kobayashi, H. Hasebe, and H.Takatsu, “Mol. Cryst. Liq. Cryst.” 292, 333
[27] M. Shikada, Y. Tanaka, J. Xu, K. Furuichi, H. Hasebe, H. Takatsu, and S. Kobayashi, “Jpn. J. Appl. Phys.”, Part 1 40, 5008
[28] H. Furue, T. Miyama, Y. Iimura, H. Hasebe, H. Takatsu, and S. Kobayashi, ”Jpn. J. Appl. Phys.,” Part 2,36, L1517
[29] . Hideo Fujikake, Kuniharu Takizawa, Hiroshi Kikuchi, Takanori Fujii, Masahiro Kawakita and Tahito Aida, “Polymer-Stabilized Ferroelectric Liquid Crystal Devices with Grayscale Memory,” Jpn. J. Appl. Phys. 36, 6449 (1997)
[30]. Hiroto Sato, Hideo Fujikake, Yoshiki Iino, Masahiro Kawakita and Hiroshi Kikuchi, “Flexible Grayscale Ferroelectric Liquid Crystal Device Containing Polymer Walls and Networks” Jpn. J. Appl. Phys. 41, pp. 5302 (2002)
[31] S. N. Lee and L.-C. Chien, ” THE EFFECT OF POLYMER NETWORKS ON FERROELECTRIC LIQUID CRYSTALS”, Mol. Cryst. Liq. Cryst., Vol. 410, pp. 183 (2004)
[32] Suresh, S.; Chien, L.-C,” Electro-Optical Properties of Polymer-Stabilized Ferroelectric Liquid Crystal.” Ferroelectrics, 2003, Vol. 287 Issue 1, p1, 6p
[33] J.-H. Lee,C.-J. Yu, D.-H. You. andS.-D. Lee. IDW''99. 129(1999).
[34] D.-H. You, J.-H. Lee. D.-J. Na. and S.D. Lee. IDWOO, 125 (2000).
[35] Ju Hyun Lee, Doo Hwan You, , Jae Hong Park, Sin Doo Lee, and Chang Jae Yu “Wide-Viewing Display Configuration of Heilix-Deformed Ferroelectric Liquid Crystals” JOURNAL OF INFORMATION DISPLAY, VOL. 1, NO. 1, DECEMBER 2000
[36] Masanori Ozaki, Akira Tagawa, Yutaka Sadohara, Shoko Oda and Katsumi Yoshino,” Electrooptic Effect in Homeotropically Aligned Ferroelectric Liquid Crystal” Jpn. J. Appl. Phys., 30, 2366 (1991)
[37] Jae Shin Jo, Masanori Ozaki and Katsumi Yoshino, “ Electrooptic Effect Based on Helix Deformation in Homeotropically Aligned Ferroelectric Liquid Crystal” Jpn. J. Appl. Phys., 42, 526(2003)
[38] Po-Chang Wu and Jin Jei Wu, “The influence of AC electric field on the domain growing and alignment of the ferroelectric liquid crystal cell with N*-SmC* phase transition”, J. Appl. Phys., 101, 104513(2007)
[39] Jin-Jei Wu and Po-Chang Wu, and Fu-Cheng Sie, “The influence of cooling rate on the alignment of ferroelectric liquid crystal in N*-SmC* phase transition”, 21th International Liquid Crystal Conference, Keystone, Colorado U.S.A.
[40] J. Xue and N. A. Clark, “Surface Electroclinic Effect in Chiral Smectic-A Liquid Crystals,” Phys. Rev. Lett. 64, 3 (1990).
[41] M. S. Spector, S. K. Prasad, B. T. Weslowski, R. D. Kamien, J. V. Selinger, B. R. Ratna, and R.Shashidhar, “Chiral twisting of a smectic-A liquid crystal,” Ph. Rev. E 61, 4 (2000).
[42] W. Chen, Y. Ouchi, T. Moses, and Y. R. Shen, “Surface electroclinic effect on the layer structure of a FLC,” Ph. Rev. Lett. 68, 10 (1992).
[43] K. Nakagawa, T. Shinomiya, M.Koden, K. Tsubota, T.Kuratate,Y. Ishii, F. Funada, M. Matsuura, and K. Awane, Ferroelectrics 85, 39 (1998).
[44] W. Chen, Y. Ouchi, T. Moses, Y. R. Shen, and K. H. Yang, Phys. Rev. Lett. 68, 1547 (1992).
[45] I. Musevic, R. Blinc and B. Zeks, The Physics of Ferroelectric and Antiferroelectric Liquid Crystal, Singapore: World Scientific, 2000, pp.157-170.
[46] Joseph E. Maclennan, David Muller, Ren-Fan Shao, David Coleman, Daniel J. Dyer, David M. Walba, and Noel A. Clark, Field control of the surface electroclinic effect in chiral smectic-A liquid crystals Phys. Rev. E 69, 061716, 2004
[47] A. M. Biradar, S. S. Bawa, Kanchan Saxena and Subhas Chandra, Surface electroclinic effect in ferroelectric liquid crystal, J. Phys. II France 3, 1787-1793, 1993
[48] A. Adamski, K.Neyts, and H. Pauwels, Surface Electroclinic Effect in Low PS Smectic Materials Without SmA Phase, ferroelectrics, 330, 93-103, 2006
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top