跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.81) 您好!臺灣時間:2025/10/06 06:18
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳彥廷
研究生(外文):Yen-Ting Chen
論文名稱:於蝴蝶蘭中過量表現pflp基因可增強光合效率及醣類累積
論文名稱(外文):Overexpressing Plant Ferredoxin-like Protein Enhances Photosynthetic Efficiency and Carbohydrates Accumulation in Phalaenopsis
指導教授:葛孟杰
指導教授(外文):Mang-jye Ger
學位類別:碩士
校院名稱:國立高雄大學
系所名稱:生物科技研究所
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:英文
論文頁數:38
中文關鍵詞:植物硫鐵蛋白光合作用蝴蝶蘭
外文關鍵詞:Plant Ferredoxin-like Protein (PFLP)PhotosynthesisPhalaenopsis
相關次數:
  • 被引用被引用:0
  • 點閱點閱:253
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
景天酸代謝為三種二氧化碳固定途徑之一,其特性為光合速率較慢但呈現極高的水分利用。雖然先前研究指出表現甜椒 plant ferredoxin-like protein (PFLP) 蛋白可增強植物對細菌性病原的抵抗力。但是由於 PFLP 其蛋白質序列與光系統I (photosystem I)中的光合蛋白 ferredoxin-1 (Fd-1) 具有高度相似性,所以如在植物中過表達該基因,有可能促使轉殖植物其光合能力增加。為了證明 PFLP 可促進光合能力,我們將 pflp 基因片段轉殖進入蝴蝶蘭,並加以分析其光合指標。在電子傳遞鏈中,轉殖植物呈現較高的電子傳遞速率,且二氧化碳吸收速率及有機酸含量亦比野生型高。在酵素活性方面,進行貯存二氧化碳形成有機酸的酵素phosphoenolpyruvate carboxylase 以及釋放二氧化碳進入卡爾文循環的酵素NAD+-linked malic enzyme 兩者活性於轉殖株較高。此外可溶性醣類如:葡萄糖、果糖及蔗糖其含量於轉殖株中較高,澱粉粒亦大量累積於轉殖株中。以上結果顯示於轉殖株中過表達 pflp 基因將會刺激電子傳遞以增強醣類累積。總而言之 pflp 不僅可增加抗病亦可促進光合作用,於農業應用上為極有效用的基因。
Crassulacean acid metabolism (CAM) is one of three major models of carbon dioxide assimilation pathway with better water-use efficiency and slower photosynthetic efficiency in photosynthesis. Previous studies indicate that expressing gene of sweet pepper plant ferredoxin-like protein (PFLP) can enhance disease resistance to bacterial pathogens. The protein sequence of PFLP shows high homology to the ferredoxin-1(Fd-1) family that belongs to photosynthetic type Fd and involves in photosystem I. It is proposed that overexpressing pflp in transgenic plant may enhance photosynthetic efficiency. To investigate whether PFLP could improve photosynthetic efficiency, pflp transgenic Phalaenopsis were generated to analyze photosynthetic markers. Transgenic plant exhibited highly electron transport rate than that of wild type (WT). Compared with WT, transgenic plant showed higher CO2 assimilation rate and organic acids contents. Both of phosphoenolpyruvate carboxylase (PEPC) and NAD+-linked malic enzyme (NAD+-ME) activities also increased in transgenic plant. Finally, the photosynthesis products were examined between transgenic plant and WT. Soluble sugars contents such as glucose, fructose, and sucrose showed significantly increased in transgenic plant. The starch grains also highly accumulated in transgenic plant than that of WT. These above results indicate that overexpressing pflp in transgenic plant increases carbohydrates accumulation by the stimulation of electron transport flow. Altogether, we suggest pflp may be an extremely useful gene for agriculture that not only increases disease resistant but also enhances photosynthetic efficiency.
Contents
Page
Contents…………………..………………………..............…...........…I
List of tables…………………..………………………..............….…III
List of figures…………...…………….………........……………….…IV
Chinese abstract…………………………………………..........…….…01
English abstract……………………………….............................….….02
Chapter I Introduction…………………………..............………….…..04
Chapter II Materials and methods…………………...............…….…...07
2.1 Plant material, growth conditions and transformation…............07
2.2 Genomic PCR, reverse transcription PCR and GUS stain…......07
2.3 Analysis of photosynthetic gas exchange...................................08
2.4 Chlorophyll fluorescence measurements....................................08
2.5 Histological detection of starch grains........................................09
2.6 Metabolites analysis................................................................…09
2.7 Enzyme extraction and activity assays........................................10
Chapter III Results...................................................................................11
3.1 Generation and selection of Phalaenopsis transformants……....11
3.2 Overexpressing pflp enhances PETC in transgenic plants……11
3.3 Comparing the CO2 assimilation rate between transgenic
plants and WT.............................................................................12
3.4 Effects of increasing of CO2 assimilation on organic acid
contents in transgenic plants…...................................................13
3.5 The activities of PEPC and NAD+-ME......................................13
3.6 The impact of overexpressing pflp on carbohydrate
accumulation in transgenic plants…............................................14
Chapter IV Discussion……………………………....……………….16
Chapter V References…………………………..…….............………26
Chapter VI List of abbreviation..................................................………32
Chapter VII Supplement.…...………………………….............………33
Arron GP, Spalding MH, Edwards GE (1979) Isolation and oxidative properties of intact mitochondria from the leaves of Sedum praealtum: a crassulacean acid metabolism plant. Plant Physiol 64: 182-186
Bakrim N, Brulfert J, Vidal J, Chollet R (2001) Phosphoenolpyruvate carboxylase kinase is controlled by a similar signaling cascade in CAM and C4 plants. Biochem Biophys Res Commun 286: 1158-1162
Bonner W, Bonner J (1948) The role of carbon dioxide in acid formation by succulent plants. Am J Bot 35: 113-117
Brandes HK, Larimer FW, Hartman FC (1996) The molecular pathway for the regulation of phosphoribulokinase by thioredoxin f. J Biol Chem 271: 3333–3335
Callaway TR, Martin SA, Wampler JL, Hill NS, Hill GM (1997) Malate content of forage varieties commonly fed to cattle. J Dairy Sci 80: 1651-1655
Carter P, Wilkins MB, Nimmo HG, Fewson CA (1995) Effects of temperature on the activity of phosphoenolpyruvate carboxylsae and on the control of CO2 fixation in Bryophyllum fedtschenkoi. Planta 196: 375-380
Chan YL, Lin KH, Sanjaya, Liao LJ, Chen WH, Chan MT (2005) Gene stacking in Phalaenopsis orchid enhances dual tolerance to pathogen attack. Transgenic Res 14: 279-288
Chen WH, Tseng YC, Liu YC, Chuo CM, Chen PT, Tseng KM, Yeh YC, Ger MJ, Wang HL (2008) Cool-night temperature induces spike emergence and affects photosynthetic efficiency and metabolizable carbohydrate and organic acid pools in Phalaenopsis aphrodite. Plant Cell Rep 27: 1667-1675
Chida H, Nakazawa A, Akazaki H, Hirano T, Suruga K, Ogawa M, Satoh T, Kadokura K, Yamada S, Hakamata W, Isobe K, Ito T, Ishii R, Nishio T, Sonoike K, Oku T (2007) Expression of the algal cytochrome c6 gene in Arabidopsis enhances photosynthesis and growth. Plant Cell Physiol 48: 948-957
Chollet R, Vidal J, O'Leary MH (1996) Phosphoenolpyruvate carboxylase: a ubiquitous, highly regulated enzyme in plants. Annu Rev Plant Phys Plant Mol Biol 47: 273-298
Clancey CJ, Gilbert HF (1987) Thiol/disulfide exchange in the Thioredoxin-catalyzed reductive activation of Spinach chloroplast Fructose 1-, 6-bisphosphatase. J Biol Chem 262: 13545-13549
Day DA (1980) Malate decarboxylation by Kalanchoë daigremontiana mitochondria and its role in crassulacean acid metabolism. Plant Physiol 65: 675-679
Dayakar BV, Lin HJ, Chen CH, Ger MJ, Lee BH, Pai CH, Chow D, Huang HE, Hwang SY, Chung MC, Feng TY (2003) Ferredoxin from sweet pepper (Capsicum annuum L.) intensifying harpinpss-mediated hypersensitive response shows an enhanced production of active oxygen species (AOS). Plant Mol Biol 51: 913-924
Droux M, Jacquot JP, Miginac-Maslow M, Gadal P, Huet JC, Crawford NA, Yee BC, Buchanan BB (1987) Ferredoxin-thioredoxin reductase, an iron-sulfur enzyme linking light to enzyme regulation in oxygenic photosynthesis: purification and properties of the enzyme from C3, C4, and cyanobacterial species. Arch Biochem Biophys 252: 426-439
Droux M, Miginiac-Maslow M, Jacquot JP, Gadal P, Crawford NA, Kosower NS, Buchanan BB (1987) Ferredoxin-thioredoxin reductase: a catalytically active dithiol group links photoreduced ferredoxin to thioredoxin functional in photosynthetic enzyme regulation. Arch Biochem Biophys 256: 372-380
Dycus AM, Knudson L (1957) The role of the velamen of the aerial roots of orchids. Botan Gaz 119: 78-87
Endo M, Ikusima I (1989) Diurnal rhythm and characteristics of photosynthesis and respiration in the leaf and root of a Phalaenopsis plant. Plant Cell Physiol 30: 43-47
Engard CJ (1944) Morphological identity of the velamen and exodermis in orchids. Botan Gaz 105:457-462
Glauser DA, Bourquin F, Manieri W, Schürmann P (2004) Characterization of ferredoxin:thioredoxin reductase (FTR) modified by site-directed mutagenesis. J Biol Chem 279: 16662-16669
Golding AJ, Finazzi G, Johnson GN (2004) Reduction of the thylakoid electron transport chain by stromal reductants - evidence for activation of cyclic electron transport upon dark adaptation or under drought. Planta 220: 356-363
Goyer A, Decottignies P, Lemaire S, Ruelland E, Issakidis–Bourguet E, Jacquot JP, Miginiac–Maslow M (1999) The internal Cys207 of sorghum leaf NADP-malate dehydrogenase can form mixed disulfides with thioredoxin. FEBS Letters 444: 165-169
Guo WJ, Lee N (2006) Effect of leaf and plant age and day/night temperature on net CO2 uptake in Phalaenopsis amabilis var. Formosa. J Amer Soc Hort Sci 131: 320-326
Hanke GT, Hase T (2008) Variable photosynthetic roles of two leaf-type ferredoxins in Arabidopsis, as revealed by RNA interference. Photochem Photobiol 84: 1302-1309
Heber U, Walker D (1992) Concerning a dual function of coupled cyclic electron transport in leaves. Plant Physiol 100: 1621-1626
Holmgren A (1989) Thioredoxin and glutaredoxin systems. J Biol Chem 264: 13963-13966
Holtgrefe S, Bader KP, Horton P, Scheibe R, von Schaewen A, Backhausen JE (2003) Decreased content of leaf ferredoxin changes electron distribution and limits photosynthesis in transgenic potato plants. Plant Physiol 133: 1768-1778
Joliot P, Joliot A (2006) Cyclic electron flow in C3 plants. Biochim Biophys Acta 1757: 362-368
Junge W (1977) Physical aspects of light harvesting, electron transport and electrochemical potential generation in photosynthesis of green plants. In: Trebst A, Avron M (ed) In Encyclopedia of Plant Physiology: Photosynthesis, Vol. 5. Springer-Verlag, New York, pp 59-93
Lee N, Guo WJ (2000) Photosynthesis in Phalaenopsis amabilis. In: Lee GJ (ed) Proceedings of the academic cooperation conferences on technology development, vol. 1. Taiwan sugar, Taipei, pp 11-15
Lefebvre S, Lawson T, Zakhleniuk OV, Lloyd JC, Raines CA (2005) Increased sedoheptulose-1,7-bisphosphatase activity in transgenic tobacco plants stimulates photosynthesis and growth from an early stage in development. Plant Physiol 138: 451-460
Liau CH, Lu JC, Prasad V, Hsiao HH, You SJ, Lee JT, Yang NS, Huang HE, Feng TY, Chen WH, Chan MT (2003) The sweet pepper ferredoxin-like protein (pflp) conferred resistance against soft rot disease in Oncidium orchid. Transgenic Res 12: 329-336
Lootens P, Heursel J (1998) Irradiance, temperature and carbon dioxide enrichment affect photosynthesis in Phalaenopsis hybrids. Hortscience 33: 1183-1185
McWilliams EL (1970) Comparative rates of dark CO2 uptake and acidification in Bromeliaceae, Orchidaceae and Euphorbiaceae. Botan Gaz 131: 285-290
Miyagawa Y, Tamoi M, Shigeoka S (2001) Overexpression of a cyanobacterial fructose-1,6-/sedoheptulose-1,7-bisphosphatase in tobacco enhances photosynthesis and growth. Nat Biotechnol 19: 965-969
Miyake C, Shinzaki Y, Miyata M, Tomizawa, KI (2004) Enhancement of cyclic electron flow around PSI at high light and its contribution to the induction of non-photochemical quenching of Chl fluorescence in intact leaves of tobacco plants. Plant Cell Physiol 45: 1426-1433
Miyake C, Miyata M, Shinzaki Y, Tomizawa KI (2005) CO2 response of cyclic electron flow around PSI (CEF-PSI) in tobacco leaves—relative electron fluxes through PSI and PSII determine the magnitude of non-photochemical quenching (NPQ) of Chl fluorescence. Plant Cell Physiol 46: 629-637
Nobel PS (1991) Achievable productivities of certain CAM plants: basis for high values compared with C3 and C4 plants. New Phytol 119:183-205
Nimmo HG (2000) The regulation of phosphoenolpyruvate carboxylase in CAM plants. Trends Plant Sci 5: 75-80
Nishizawa AN, Buchanan BB (1981) Enzyme regulation in C4 photosynthesis. Purification and properties of thioredoxin-linked fructose bisphosphatase and sedoheptulose bisphosphatase from corn leaves. J Biol Chem 256: 6119-6126
Osmond CB (1978) Crassulacean acid metabolism: a curiosity in context. Annu Rev Plant Physiol 29: 379-414
Ota K, Morioka K, Yamamoto Y (1991) Effects of leaf age, inflorescence, temperature, light intensity and moisture conditions on CAM photosynthesis in Phalaenopsis. J Japan Soc Hort Sci 60: 125-132
Pyankov VI, Voznesenskaya EV, Kuz’min AN, Ku MSB, Ganko E, Franceschi VR, Black CC, Edwards GE (2000) Occurrence of C3 and C4 photosynthesis in cotyledons and leaves of Salsola species (chenopodiaceae). Photosynth Res 63: 69-84
Rohacek K, Bartak M (1999) Technique of the modulated chlorophyll fluorescence: basic concepts, useful parameters, and some applications. Photosynthetica 37: 339-363
Schürmann P and Buchanan BB (2001) The structure and function of the ferredoxin/thioredoxin system in photosynthesis. Regulation of Photosynthesis 11: 331-361
Schürmann P, Buchanan BB (2008) The ferredoxin/thioredoxin system of oxygenic photosynthesis. Antioxid Redox Signal 10: 1235-1274
Shin LJ, Huang HE, Chang H, Lin YH, Feng TY, Ger MJ (2011) Ectopic ferredoxin I protein promotes root hair growth through induction of reactive oxygen species in Arabidopsis thaliana. J Plant physiol 168: 434-440
Tang K , Sun X , Hu Q , Wu A, Lin CH, Lin HJ , Twyman RM, Christou P , Feng TY (2001) Transgenic rice plants expressing the ferredoxin-like protein (AP1)from sweet pepper show enhanced resistance to Xanthomonas oryzae pv. oryzae. Plant Sci 160: 1035-1042
Trost P, Fermani S, Marri L, Zaffagnini M, Falini G, Scagliarini S, Pupillo P, Sparla F (2006) Thioredoxin-dependent regulation of photosynthetic glyceraldehyde-3-phosphate dehydrogenase: autonomous vs. CP12-dependent mechanisms. Photosynth Res 89: 263-275
Voss I, Koelmann M, Wojtera J, Holtgrefe S, Kitzmann C, Backhausen JE, Scheibe R (2008) Knockout of major leaf ferredoxin reveals new redox-regulatory adaptations in Arabidopsis thaliana. Physiol Plant 133: 584-598
Wang HL, Lee PD, Juang RH, Su JC (1993) Starch-accumulating sweet potato callus tissue devoid of β-amylase but with two starch phosphorylase isozymes. Biosci Biotech Biochem 57: 1311-1315
Wang HL, Lee PD, Chen WL, Huang DJ, Su JC (2000) Osmotic stress-induced changes of sucrose metabolism in cultured sweet potato cells. J Exp Bot 51: 1991-1999
Yamamoto H, Kato H , Shinzaki Y, Horiguchi S , Tomizawa Toshiharu KI, Miyake C (2006) Ferredoxin limits cyclic electron flow around PSI (CEF-PSI) in higher plants-Stimulation of CEF-PSI enhances non-photochemical quenching of Chl fluorescence in transplastomic tobacco. Plant Cell Physiol 47: 1355-1371
Yip MK, Lee SW, Su KC, Lin YH, Chen TY, Feng TY (2011) An easy and efficient protocol in the production of pflp transgenic banana against Fusarium wilt. Plant Biotechnol Rep 5: 245-254
Zhang N, Portis AR Jr (1999) Mechanism of light regulation of Rubisco: a specific role for the larger Rubisco activase isoform involving reductive activation by thioredoxin-f. Proc Natl Acad Sci USA 96: 9438-9443
Zotz G (2004) How prevalent is crassulacean acid metabolism among vascular epiphytes? Oecologia 138: 184-192
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊