跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.11) 您好!臺灣時間:2025/09/24 17:33
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:莊仁宏
研究生(外文):Jen-Hung Chuang
論文名稱:利用PichiafermentansL-5細胞轉換Phenylalanine生產乙酸苯乙酯
論文名稱(外文):Bioconversion of phenylalanine to 2-phenylethyl acetate by Pichia fermentans L-5
指導教授:李繡鈴
指導教授(外文):Shiow-Ling Lee
學位類別:碩士
校院名稱:大同大學
系所名稱:生物工程研究所
學門:工程學門
學類:生醫工程學類
論文種類:學術論文
論文出版年:2000
畢業學年度:88
語文別:中文
論文頁數:110
中文關鍵詞:乙酸苯乙酯生物轉化Pichia fermentans L-5反應曲面試驗設計
外文關鍵詞:2-phenylethyl acetatebioconversionPichia fermentans L-5Response surface methods
相關次數:
  • 被引用被引用:3
  • 點閱點閱:224
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究利用反應曲面的實驗設計以獲得培養大量Pichia fermentans L-5菌體細胞之最佳培養組成為12.6 g/l 酵母抽出物及39 g/l 葡萄糖;在30℃下200rpm振盪培養進行Pichia fermentans L-5菌體轉化葡萄糖及苯丙胺酸生成乙酸苯乙酯之影響因子測試。結果發現以培養12小時(生長對數期中期)的菌體之轉化能力最強;菌量測試上發現2.4 ~ 4.8 c.d.w. g/l 的菌體濃度為適量;反應的基質濃度測試中發現27 g/l 葡萄糖及900 mg/l 苯丙胺酸為最適反應基質濃度;轉化液初始pH值為3~10時,對乙酸苯乙酯之生成無顯著影響;高通氣量則有助於轉化生成乙酸苯乙酯;轉化溫度為37.5℃時,菌體轉化生成乙酸苯乙酯之速率最快,前六小時可達70 mg l-1h-1,而於轉化8小時後即可獲得最高乙酸苯乙酯產量,約474 mg/l;於較適之轉化操作條件下,以苯丙胺酸及葡萄糖,進行反應曲面試驗設計探討,求得轉化基質之最適濃度組成為765 mg/l苯丙胺酸及20.4 g/l葡萄糖,乙酸苯乙酯之理論產量為467 mg/l,重複實驗轉化8小時後,乙酸苯乙酯生成實際值為479、484及469 mg/l。
The optimal composition of medium, 39 g/l glucose and 12.6 g/l, to produce maximum cell mass of Pihica fermentans L-5 was obtained with response surface methodology. Factors affecting bioconversion of phenylalanine to 2-phenylethyl acetate by Pihica fermentans L-5 cultivated at 30℃and 200 rpm were also investigated. The cells harvested from mid-exponential growth phase (12-hr cultivation) produced higher concentrations of 2-phenylethyl acetate. The optimum cell concentrations for production of higher concentration of 2-phenylethyl acetate was ranged from 2.4 to 4.8 c.d.w. g/l. The optimal concentration of glucose and phenylalanine for production higher concentration of 2-phenylethyl acetate were 27 g/l and 900 mg/l, respectively. The initial pH of medium, ranged from 3 to 10, showed no significant difference in 2-phenylethyl acetate production. Increase in the aeration of the medium resulted in the enhancement of production of 2-phenylethyl acetate. When cultivation temperature was at 37.5℃, the maximum productivity of 2-phenylethyl acetate 70 mg l-1h-1, was found after 6 hr of cultivation. The maximum production of 2-phenylethyl acetate 474 mg/l , was obtained after 8 hr of cultivation at 37.5℃. An optimum composition of conversion medium, i.e. 765 mg/l phenylalanine and 20.4 g/l glucose, was obtained with response surface methodology under optimum operation condition. The theoretical value of 2-phenylethyl acetate was 467 mg/l. The experimental values of 2-phenylethyl acetate produced by Pihica fermentans L-5 were 484 479 and 469 mg/l.
目錄
中文摘要
英文摘要
壹、前言………………………………………………………………1
貳、文獻整理…………………………………………………………2
(一) 食品香料之定義及分類…………………………………… 2
(二) 微生物生產香料之模式……………………………………4
1. 微生物生合成(de novo synthesis)………………………..4
2. 生物轉化(biotransformation/bioconversion)……………………5
(三) 以生物轉化法生成之芳香物質……………………………….10
1. 甲基酮類(Methyl Ketones)………………………………….10
2. 內酯類(Lactones)……………………………………………10
3. 烯類衍生物(Terpenes)……………………………………13
4. 酯類(esters)…………………………………………………..14
(四) 苯丙胺酸轉化芳香之探討……………………….……………16
1. 苯丙胺酸為芳香物之前驅物…………………………………..16
2. 轉化苯丙胺酸生成乙酸苯乙酯之探討………………………..19
3. 生物轉化系統之影響因子……………………………………..19
(1) 菌種選擇……………………………………………………..19
(2) 碳源及氨基酸的選擇……………………………………22
(3) 菌體生理期之影響…..………………………………………23
(4) 基質濃度……………………..………………………………24
(5) 轉化溫度、pH值……………………………………………25
(6) 通氣量……..…………………………………………………26
4. 乙酸苯乙酯與乙酸苯乙醇之應用……………………………..26
參、實驗材料與方法…………………………………………………..28
一、實驗材料…………………………………………………………..28
(一) 菌種……………………………………………………………28
(二) 培養基與藥品…………………………………………………28
二、實驗方法………………………………………………………….28
(一) 菌種保存與活化………………………………………………28
(二) 利用二因子反應曲面法尋求P. fermentans L-5 大量細胞之
最適培養液組成………………………………………………29
(三) P. fermentans L-5菌體於最適組成培養液下的生長探討…33
(四) P. fermentans L-5細胞懸浮液之備製………………………..33
(五) P. fermentans L-5細胞轉化生成乙酸苯乙酯及乙酸苯乙醇之
因子探討……………………………………………………..33
1. 菌體生長期之影響試驗………………………………………34
2. 菌體濃度對轉化的影響試驗…………………………………34
3. 轉化液培養組成之影響試驗…………………………………34
(1) 葡萄糖濃度之影響試驗……………………………………..34
(2) 苯丙胺酸濃度之影響試驗…………………………………..35
4. 轉化操作條件之影響試驗……………………………………35
(1) 轉化液之pH初值之影響試驗………………………………35
(2) 轉化溫度之影響試驗………………………………………..35
(3) 通氣量之影響試驗…………………………………………..35
5. 利用二因子反應曲面法尋求最適之轉化培養液組成………36
6. P. fermentans L-5菌體於最適轉化培養液下的轉化試驗……37
(六) 分析方法………………………………………………………37
1. 菌數測定………………………………………………………37
2. 活菌數測定…………………………………………………….37
3. 菌體乾重……………………………………………………….37
4. pH測定…………………………………………………………39
5. 葡萄糖含量測定……………………………………………….39
6. 苯丙胺酸、乙酸苯乙酯及乙酸苯乙醇之含量測定………….39
肆、結果與討論……………………………………………………….41
(一) 利用二因子反應曲面法尋求P. fermentans L-5 大量細胞之
最適培養液組成………………………………………………41
(二) P. fermentans L-5菌體於最適培養液下的生長情形………..46
(三) P. fermentans L-5細胞轉化生成乙酸苯乙酯及乙酸苯乙醇
之因子探討……………………………………………………49
1. 菌體生長期之影響試驗………………………………………..49
2. 菌體濃度對轉化的影響探討…………………………………..54
3. 轉化液培養組成之影響試驗…………………………………..59
(1) 葡萄糖濃度對轉化的影響試驗……………………………..59
(2) 苯丙酸濃度對轉化的影響試驗……………………………..65
4. 轉化操作條件探討……………………………………………..69
(1) 轉化液之pH初值之影響試驗………………………………71
(2) 轉化溫度之影響試驗…………………………………..73
(3) 通氣量之影響試驗…………………………………………..78
(4) 利用二因子反應曲面法尋求最適之轉化培養液組成……..82
(5) P. fermentans L-5菌體於最適轉化培養液下的轉化試驗….94
伍、結論………………………………………………………………97
陸、參考文獻…………………………………………………………99
柒、附錄………………………………………………………………107
圖次
頁次
圖一 利用Penicillium roqueforti孢子氧化脂肪酸轉換成甲基酮….11
圖二 利用Yarroowia lipolytica 細胞轉換ricionoeic acid生成γ-
decalactone………………………………………………………12
圖三 利用Pseudomonas sp.L降解 (+)-limonene之代謝路徑……..15
圖四 以生物技術生成benzaldehyde 及2-phenylethyl alcohol 之路
徑推測……………………………………………………………17
圖五 Ehrich 代謝路路徑……………………………………………..20
圖六 推測phenylalanine生物轉化生成2-phenylethyl acetate之路
徑…………………………………………………………………21
圖七Glucose及yeast extract濃度對培養24小時P. fermentans L-5
菌體濃度(OD600)之反應曲面圖及等高線圖………………..47
圖八 P. fermentans L-5於最適培養基下之生長,培養液pH變化
及葡萄糖消耗情形……………………………………………..48
圖九 不同生長期之P. fermentans L-5於轉化過程中苯丙胺酸及葡
萄糖消耗和乙酸苯乙酯及乙酸苯乙醇產生之情形……………51
圖十 不同P. fermentans L-5菌體濃度,於轉化過程中苯丙胺酸及
葡萄糖消耗和乙酸苯乙酯及乙酸苯乙醇產生之情形…………55
圖十一 不同葡萄糖濃度,對P. fermentans L-5菌體於轉化過程
中,苯丙胺酸和酸葡萄糖和乙酸苯乙酯及乙酸苯乙醇產
生之情形………………………………………………………60
圖十二 不同苯丙胺酸濃度,對P. fermentans L-5菌體於轉化過
程中,苯丙胺酸和酸葡萄糖消耗和乙酸苯乙酯及乙酸苯
乙醇產生之情形………………………………………………67
圖十三 不同葡萄糖濃度,對P. fermentans L-5菌體於轉化過程中,
苯丙胺酸和酸葡萄糖和乙酸苯乙酯及乙酸苯乙醇產生之情
形……………………………………………………………..72
圖十四 不同培養溫度,對P. fermentans L-5菌體於轉化過程中,
苯丙胺酸和酸葡萄糖消耗和乙酸苯乙酯及乙酸苯乙醇產生
之情形……………………………………………………….76
圖十五 不同培養通氣量,對P. fermentans L-5菌體於轉化過程
中,苯丙胺酸和酸葡萄糖消耗和乙酸苯乙酯及乙酸苯乙
醇產生之情形…………………………………………………81
圖十六 培養4小時後苯丙胺酸濃度與葡萄糖濃度對於乙 酸苯乙
酯生成量之等高線圖…………………………………………85
圖十七 培養8小時後苯丙胺酸濃度與葡萄糖濃度對於乙酸苯乙
酯生成量之等高線圖…………………………………………93
圖十八 最適轉化培養組成下,P. fermentans L-5菌體生長、葡萄
糖和苯丙胺酸消耗及乙酸苯乙酯和乙酸苯乙醇生成之情
形…………………………………………………………….95
表次
頁次
表一 微生物以生合成方式生成之芳香物質…………………………6
表二 利用微生物細胞或或酵素之生物轉化反應……………………7
表三 利用lipase於胞外合成酯類芳香物質…………………………18
表四 生成菌體細胞之兩因子五變級之十三組試驗中心組成設計…31
表五 轉化液組成之二因子五變級之十三組試驗中心組成設計……38
表六 生成菌體細胞中心組成設計之試驗結果………………………43
表七 反應曲面試驗設計之P. fermentans L-5菌量(OD600)之變異
性分析……………………………………………………………44
表八 菌體生成量之複迴歸係數………………………………………45
表九 不同生長期下,P. fermentants L-5之生長,培養液pH終值
及乙酸苯乙酯與乙酸苯乙醇之產生……………………………53
表十 不同P. fermentants L-5細胞濃下,P. fermentants L-5之生長
,培養液pH終值及乙酸苯乙酯與乙酸苯乙醇之產生……….58
表十一 不同葡萄糖濃度下,P. fermentants L-5之生長,培養液
pH終值及乙酸苯乙酯與乙酸苯乙醇之產生………………..64
表十二 不同苯丙胺酸濃度下,P. fermentants L-5之生長,培養液
pH終值及乙酸苯乙酯與乙酸苯乙醇之產生………………..70
表十三 不同初始 pH值下,P. fermentants L-5之生長,培養液
pH終值及乙酸苯乙酯與乙酸苯乙醇之產生………………..74
表十四 不同溫度下P. fermentants L-5之生長,培養液pH終值
及乙酸苯乙酯與乙酸苯乙醇之產生…………………………79
表十五 不同通氣量下,P. fermentants L-5之生長,培養液pH
終值及乙酸苯乙酯與乙酸苯乙醇之產生……………………83
表十六 轉化液組成之中心組成設計之試驗結果……………………86
表十七 反應曲面試驗設計之生成乙酸苯乙酯變異性分析…………87
表十八 培養4小時後乙酸苯乙酯生成量回歸模式之複迴歸係數…88
表十九 反應曲面試驗設計之生成乙酸苯乙酯變異性分析…………90
表二十 培養8小時後乙酸苯乙酯生成量回歸模式之複迴歸係數…92
1. 李永川。1997。利用Pichia fermentans L-5生產乙酸苯乙酯。大同工
學院化學工程研究所碩士論文。台北。
2. 吳淳美,陳調榮,劉黛蒂,詹敬文,陳振昆。1992。食品香料原料
總覽。食品工業月刊社,新竹。
3. 喬長誠。1989。食品技術與香料生產。食品工業,21(10):27-36。
4. 潘子明、郭千祺、王健行、王仁澤、陳傳黃。1990。增進
Saccharomyces 屬微生物香氣生產能力之研究。食品科學。17: 221-
234
5. 賴耿陽。1980。實用香料化學。複漢出版社,台南。
6. Abbi, M., Kuhad, R. C. and Singh, A. 1996. Bioconversion of
pentose sugars to ethanol by free and immobilized cells of
Candida shehatae (NCL-3501): fermentation behaviour. Proc.
Biochem. 31: 555-560
7. Akita, O., Ida, T., Obata, T. and Hara, S. 1989. Mutants of
Saccharomyces cerevisiae producing a large quantity of β-
phenethyl acetate. J. Ferment. Bioeng. 125-128
8. Albertazzi, E., Cardillo, R., Servi, S. and Zucchi, G. 1994.
Biogeneration of 2-phenylethanol and 2-phenylethylacetate
important aroma components. Biotechnol. Lett. 16: 491-496
9. Armstrong, D. W., S. M. Martin and M. Y.amazaki 1984.
Production of ethyl acetate from dilute ethanol solutions by
Candida utilis. Biotechnol. Bioeng. 26: 1038-1041.
10. Andersson, E. and Hagerdal, B. H. 1990. Bioconversions in
aqueous two-phase systems. Enzyme Microb. Technol. 12: 242-
254
11. Ayrapaa, T. 1964. The formation of phenethyl alcohol from C-
labelled phenylalanine. J. Inst. Brew. 71: 341-347
12. Belin, J. M., Bensoussan, M. and Carreon, L. S. 1992.
Microbial biosynthesis for the production of food flavours.
T. F. Sci. Technol. Jan. 3: 11-14
13. Ben-Amotz, A, and Avron, M. 1981. Glycerol and carotene
metabolism in the haotolerant alga Dunaliella: A model
system for solar energy conversion. T. Biochem. Sci. 6: 297-
299
14. Berdague, J. L., Monteil, P., Monteil, M. C., Talon, R.,
1993. Effect of starter cultures of the formation of flavor
compounds in dry sausauge. Meat. Sci. 35: 275-287.
15. Berger, R.G. 1995. Aroma Biotechnol. Springer. New York. p1-
174.
16. Casey, J. and Dobb, R. 1992. Microbial routes to aromatic
aldehydes. Enzyme Microb. Technol. 14: 739-747
17. Cartwright, C. P., Juroszek, J.R., Beavan, M. J.,Ruby,
F.M.S., de Morais, S. M. F. and Rose, A. H. 1986. Ethanol
dissipates the proton-motive force across the plasma
membrane of Saccharomyces cerrvisiae. J.Gen. Microbiol. 132:
369-377.
18. Chalier, P. and Crouzet, J. 1998. Methyl ketone production
from copra oil by Penicillium roqueforti spores. Food Chem.
63: 447-451
19. Cheetham, P.S.J. 1993. The use of biotransformation for the
production of flavours and fragrandces. Trends. Biotechnol.
35: 478-488.
20. Cho, H. Y. and Soda, K. 1997. A new enzymatic method for
phenylalanine synthesis using aminoacylase and phenylalanine
dehydrogenase. Biosci. Biotechnol. Biochem. 61: 1216-1218
21. Christen, P. and Raimbault, M. 1991. Optimization of
culture medium for aroma pruduction by Ceratocystis
fimbriata. Biotechnol. Lett. 13: 521-526
22. Christen, P. and Mungufa, A. L. 1994. Enzymes and food
flavor. Food Biotech. 8: 167-190
23. Creuly, C., Larroche, C., and Gros, J. B. 1990. A fed-batch
technique for 2-heptanone production by spores of
Penicillium roquefortii. Appl. Microbiol. Biotechnol. 34: 20-
24. Damore, T., Russell, I. And Stewart, G. G. 1989. Sugar
utilization by yeast during fermentation. J. Ind. Microbiol.
4: 315-324
25. Dziezak, J. D. 1986. Biotechnology and flavor development:
plant tissue culture. Food Technol. 4: 122-129.
26. Fabre, C. E., Blance, P. J.and Goma, G 1998a.. 2-
phenylethyl alcohol: an aroma profile. Pref. Flavor. 23: 43-
45.
27. Fabre, C. E., Blance, P. J.and Goma, G 1998. b. Production
of 2-phenylethyl alcohol by Kluyveromyces marxianus.
Biotechnol. Prog. 14: 270-274.
28. Feron, G., Bonnarme, P. and Durand, A. 1996. Prospects for
the microbial production of food flavours. Tre. F. Sci.
Technol. 7: 285-293.
29. Fogler, S. H., 1992. Elemennts of chemical reaction
engineering. Fogler, S. H. (ed), Englewood Cliffs, New
Jersey. p 289-311.
30. Fujii, T., Kobayashi, O., Yoshimoto, H., Furukawa, S. and
Tamai, Y. 1997. Effect of aeration and unsaturated fatty
acids on expression of the Saccharomyces cerevisiae alcohol
acetyltransfferase gene. Appl. Environ. Microbiol. 63: 910-
915.
31. Fucuda, K., watanabe, M., Asano, K., Ueda, H. and Ohta, S.
1990. Breeding of brewing yeast producing a large amount of
β-phenylethyl alcohol andβ-phenylethyl acetate. Agric.
Biol. Chem. 54: 269-271
32. Fukuda, K., Yamamoto, N., Kiyokawa, Y., Yanagiuchi, T.,
Wakai, Y., Kitamoto, K. and Inoue, Y., 1998. Balance of
activities of alcohol acetyltransferase and esterase in
Saccharomyces cereviseae is important for productionof
isoamyl acetate. Appl. Environ. Microbiol. 64: 4076-4078.
33. Hall, R. L. 1968. Food Technol . 22: 1496.
34. Hull, S. L., Grahame, J. and Mill , P. J. 1999. Heat
stability and activity levels of aspartate aminotransferase
and alanine aminotrasferase in British Littorinidae. J. Exp.
Ma. Bio. Eco. 237: 255-270
35. IOFI. 1976. Basic Features of Modern Flavor Regulation .
IFOI. Geneva.
36. Janssens, L., Pooter, H. L. D., Schamp, N. M. and Vandamme,
E. J. 1992. Production of flavours by microorganisms. Proc.
Biochem. 27: 195-215.
37. Kawakami, K. and Nakahara, T. 1994. Importance of solute
partitioniong in biphasic oxidation of benzyl alcohol by
free and immobilized whole cells of Pichia pastoris.
Biotechnol. Bioeng. 43: 918-924.
38. Kawabe, T. and Morita, H. 1994. Production of benzaldehyde
and benzyl alcohol by the mushroom Polyporus tuberaster
K2606. J. Agric. Food Chem. 42: 2556-2560.
39. Khelifa, N., Dugay, A., Tessedre, A. C., Guyon, F. and
Rimbault, A. 1998. Bioconversion of 2-amino acids to 2-
hydroxy acids by Clostridium butyricum. Microbiol. Lett.
169: 199-205
40. Lamberet, G., Auberger, B. and Bergere, J. L. 1997.
Aptitude of cheese bacteria for volatile S-methyl thioester
synthesis. II. Comparison of coryneform bacteria,
micrococcaceae and some lactic acid bacteria starters. Appl.
Micro. Biotech. 48: 393-397
41. Lapadatescu, C., Feron, G., Vergoignan, A., Djian, A.,
Durand, A., Bonnarme, P. 1997. Influence of cell
immobilization on the production of benzaldehyde and benzyl
alcohol by the white-rot fungi Bjerknadera adusta,
Ischnoderma benzoinum and Dichomitus squalens. Appl.
Microbiol. Biotechnol. 47: 708-714
42. Layman, P. L. 1984. Flavors and fragranes industry faces
season of consolidation. Chem. Eng. 30: 7-13
43. Lee, C. W. and Desmazeaud, M. J. 1985. Partial purification
and some properties of an aromatic-amino-acid and an
aspartate aminotransferase in Brevibacterium linens 47. J.
Gen. Micro. 131: 459-467
44. Lee , S. L., Lin, S. J. and Chou, C. C. 1995. Growth of and
production of γ-decalactone by Sporobolomyces odorus in jar
fermentation as affected by pH, aeration and fed-batch
technique. J. Ferment. Bioeng. 80: 195-199.
45. Liu, W. H. and Lo, C. K. 1997. Production of testosterone
from cholesterol using a single-step microbial
transformation of Mycobacterium sp. J. Ind. Micro. Biotech.
19: 269-272
46. Liu, Y., Kondo, A., Ohkawa, H., Shiota, N. and Fukuda, H.
1998. Bioconversion using immobilized recombinant flocculent
yeast cells carrying a fused enzyme gene in an intelligent
bioreactor. Biochem. Eng. J. 2: 229-235
47. Lo, Y. M., Yang, S. T. and Min, D. B. 1997. Effects of
yeast extract and glucose on xanthan production and cell
growth in batch culture of Xanthomonas Campestris. Appl.
Micro. Biotech. 47: 489-494.
48. Long, A. and Ward , O. P. 1989. Biotransformation of
benzaldehyde by Saccharomyces cerevisiae: Characterization
of the fermentation and toxicity effects of substrates and
products. Biotech. Bioeng. 34: 933-941.
49. Meyrial, V., Delgenes, J. P., Romieu, C., Moletta, R. and
Gountot, A. M. 1995. In vivo ethanol-activation of the plasma
membrane ATPase of Pichia stipitis. J. Biotechnol. 42: 109-
116.
50. Miyazawa, M., Yokote, K. and Kameoka, H. 1994.
Biotransformation of the monoterpenoid, rose oxide, by
Aspergillus niger. Phytochem. 39: 85-89
51. Molinari, F., Aragozzini, F., Cabral, J. M. S., Prazeres,
D.M.F., 1997. Continuous production of isovaleraldehyde
through extactive bioconversion in a hollow-fiber membrane
bioreactor. Enzyme Microbiol. Technol. 20: 604-611.
52. Montgomery, D. C. 1996. Response surface methods and other
approaches to process optimization. In Design and analysis of
experiments. John Wiley & Sons, Inc., New York. p575-542.
53. Montserrat, S., Inaki, R., Francois, o., Francesc G. and
Carles, C. 1993. Aldehyde production by alcohol oxidation
with gluconnobacter oxydans. Biotechnol. Lett. 15, 559-564
54. Morin, A., Raymond, Y., Cormier, F. 1994. Production of
fatty acid ethyl esters by Pseudomonas fragi under conditions
of gas stripping. Proc. Biochem. 29: 437-441
55. Mullen, K. and Ennis, D. M., 1979. Rotatable designs in
product development. Food Technol. 74-81
56. Murry, W. D. and Duff, S. J. B. 1990. Bio-oxidation of
aliphatic and aromatic high molecular weight alcohols by
Pichia pastoris. Appl. Microbiol. Biotechnol. 33: 202-305
57. Nikolova, P. and Ward, O. P. 1994. Effect of the support
matrix of biotransformation of benzaldehyde to benzyl alcohol
by yeast cells in aqueous and aqueous and aqueous-organic two-
phase system. J. Ind. Microbiol. 13: 172-176
58. Nordstrom, K. 1961. Formation of ethyl acetate in
fermentation with brewer’s yeast J. Inst. Brew. 67: 173-181.
59. Nordstrom, K. 1963. Formation of ethyl acetate in
fermentation with brewer’s yeast. Metabolism of acetyl-
coenzyme A. J. Inst. Brew. 69: 142-153
60. Nordstrom, K. 1965. Formation of esters from lower fatty
acids by various yeast species. J. Inst. Brew. 72: 38-40
61. Oda, S., Kato, A., Matsudomi , N., and Ohta, H. 1996.
Enantioselective oxidation of racemic citronellol with an
interface bioreactor. Biosci. Biotechnol. 60: 83-87
62. Olmos-Dichara, A., Ampe, F., Uribelarrea J. L., Pareilleux,
A. 1997. Growth and lactic acid production by Lactobacillus
casei ssp. rhamnosus in bath and membrane bioreactor:
influence of yeast extract and Tryptone enrichment.
Biotechnol. Lett. 19: 709-714.
63. Paalme, T., Elken, R., Vilu, R. and Korhola, M. 1997.
Growth efficiency of Saccharomyces cerevisiae on
glucose/ethanol media with a smooth change in the dilution
rate (A-stat). Enzyme Microbiol. Technol. 20: 174-181
64. Payot, T., Chemaly, Z. and Fick, M. 1999. Lactic acid
production by Bacillus coagulans─Kinetic studies and
optimization of culture medium for batch and continuous
fermentations. Enzyme Microbiol. Technol. 24: 191-199
65. Plata, M. D. C., Mauricio, J. C., Millan, C. and Ortega, J.
M. 1998. In vitro specific active of alcohol
acetyltransferase and esterase in two flor yeast strains
during biologyical aging of sherry wines. J. Ferment. Bioeng.
85: 369-374.
66. Raymond, Y., Morin, A., Cormier, F., Champagne, C. P. and
Dubeau, H. 1990. Physical factors influencing the production
of strawberry aroma by Pseucomonas fragi grown in skim milk.
Biotech. Lett. 12: 931-936
67. Raymond, Y., Morin, A., Champagne, C. P. and Cormier, F.
1991. Enhhancement of fruity aroma production of Pseudomonas
fragi grown on skim milk, whey and whey permeate supplemented
with C3-C7 fatty acids. Appl. Microbiol. Biotechnol. 34: 524-
527
68. Rodrigues, D. C. G. A., Silva, S. S., Felipe, M. G. A.
1998. Using response-surface methodology to evaluate xylitol
production by Can dida guilliermondii by fed-batch process
with exponential feeding rate. J. Biotechnol. 62: 73-77
69. Salter, G. J. and Kell, D. B., 1995. Solvent selection for
whole cell biotransformation in organic media. Crit. Rev.
Biotechnol. 15: 39-177.
70. Sakamoto, M. and Komagata, K. 1996. Aerobic growth of and
activities of NADH oxidase NADH peroxidase in lactic acid
bacteria. J. Ferment. Bioeng. 82: 210-216
71. Schaft, P. H., Burg, N.Bosch, S. and Cohen, A. M. 1992.
Microbial production of natural γ—decalactone and γ—
dodecalactone from the corresponing α,β—unsaturated
lactones in massoi bark oil. Appl. Microbiol. Biotechnol. 36:
712-716.
72. Sentheshanmuganathan, S. 1959. The mechanism of the
formation higher alcohols from amino acids by Saccharomyces
cerevisiae. T. Biochem. J. 568-576
73. Shindo, S., Murakami, J. and Koshino, S. 1992. Control of
acetate ester formation during alcohol fermentation with
immobilized yeast. J. Ferment. Bioeng. 73: 370-374.
74. Simmonds, J. and Robinson G. K. 1998. Formation of
benzaldehyde by Pseudomonas putida ATCC 12633. Appl.
Microbiol. Biotechnol. 50: 353-358
75. Spinnler, H. E. and Djian, A. 1991. Bioconversion of amino
acids into flavouring alcohols and esters by Erwinia
carotovora subsp. atroseptica. Appl. Microbiol. Biotechnol.
35: 264-269
76. Shuler, M. L. and Kargi, F. 1992. Bioprocess Engineering.
Shuler, M. L. and Kargi, F. (ed), Englewood Cliffs, New
Jersey. p128-230
77. Taherzadeh, M. J., Liden, G., Gustafsson, L. and Niklasson,
C. 1996. The effects of pantothenate deficiency and acetate
addition on anaerobic batch fermantation of glucose by
Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 46:
176-182
78. Talon, R., Chastagnac, C., Vergnais, L., Montel, M. C. and
Berdague, J. L. 1998. Production of esters by Staphylococci.
In. J. F. Micro. 45: 143-150
79. Tan Q. and Day, D. F. 1998. Organic co-solvent effects on
the bioconversion of ( R )-(+)-limonene to ( R)-(+)-α-
terpineol. Process Biochem. 33: 755-761
80. Vogel, E. M., Sopher, C. and Lee, H. 1998. Intracellular
acidification as a mechanism for the inhibition by acid
hydrolysis-derived inhibitors of xylose fermentation by
yeasts. J. Ind. Micro. Biotech. 20: 75-81
81. Welsh, F. W. 1994. Overiew of bioprocess flavor and
fragrance production. In Bioprocess production of flavor,
fragrance and color ingredient. Gabelman, A. (ed.), Wiley,
New York.
82. Yamakawa, Y., Goto, S. and Yokotsuka, I. 1978.
Fractionation and some properties of acetic-ester
synthesizing enzyme from Cladosporium cladosporioides No. 9.
Agric. Biol. Chem. 42: 269-274
83. Yamauchi, H., Hasuo, T., Amachi, T., Akita, O., Hara, S.
and Yoshizawa, K. 1989. Cell-free synthesis of ethyl
hexanoate by extract from Neurospora sp., containing a novel
acyl coenzyme A: alcohol acyltransferase. Agric. Biol. Chem.
53: 821-825
84. Yashikf, Y. and Yamashojf, S. 1996. Extracellular reduction
of menadione and ferricyanide in yeast cell suspension. J.
Ferment. Bioeng. 82: 319-321
85. Yoshioka, K. and Hashimoto, N. 1981. Ester formation by
alcohol acetyltransferase from brewers’ Yeast. Agric. Biol.
Chem. 45: 2183-2190
86. Yoshioka, K. and Hashimoto, N. 1982. Ester formation by
alcohol acetyltransferase from brewers’ yeast. Rep. Res.
Lab. Kirin Brew. Co. 25: 1-6
87. Yoshioka, K. and Hashimoto, N. 1983. Cellular fatty acid
and ester formation by alcohol acetyltransferase from
brewer’s yeast. Agric. Biol. Chem. 47: 2287-2294.
88. Yoshioka, K. and Hashimoto, N. 1984. Acetyl-CoA of brewers
yeast and formation of acetate esters. Agric. Biol. Chem.
48: 207-209
89. Yoshioka, K. and Hashimoto, N. 1984. Ester formation by
brewer’s yeast during sugar fermentation. Agric. Biol. Chem.
48: 333-340.
90. Zhang, J., Roberge, C., Reddy, J., Connors, N., Chartrain,
M. Buckland, B. and Greasham, R. 1999. Bioconversion of
indene to trans-2S, 1S-bromoinndanol and 1S,2R- indene oxide
by a bromoperoxidase/dehydrogenase preparation from
Curvularia protuberata MF5400. Enzyme Microb. Technol. 24: 86-
95.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top