|
[1]J. Dean and S. Ghemawat, MapReduce: Simplified data processing on large clusters, Communications of the ACM, vol. 51, pp. 107-113, 2008. [2]M. Zaharia, D. Borthakur, J. S. Sarma, K. Elmeleegy, S. Shenker, and I. Stoica, Delay scheduling: a simple technique for achieving locality and fairness in cluster scheduling, presented at the Proceedings of the 5th European conference on Computer systems, Paris, France, 2010. [3]E. Bortnikov, Open-source grid technologies for web-scale computing, ACM SIGACT News, vol. 40, pp. 87-93, 2009. [4]C. Ranger, R. Raghuraman, A. Penmetsa, G. Bradski, and C. Kozyrakis, Evaluating mapreduce for multi-core and multiprocessor systems, in Proceedings of the 2007 IEEE 13th International Symposium on High Performance Computer Architecture, 2007, pp. 13-24. [5]M. K. K. Sankaralingam, MapReduce for the Cell BE Architecture, University of Wisconsin Computer Sciences Technical Report, 2007. [6]B. He, W. Fang, Q. Luo, N. K. Govindaraju, and T. Wang, Mars: a MapReduce framework on graphics processors, in Proceedings of the 17th International Conference on Parallel Architectures and Compilation Techniques, 2008, pp. 260-269. [7]G. Bell, J. Gray, and A. Szalay, Petascale computational systems, IEEE Computer, vol. 39, pp. 110-112, 2006. [8]Y. El-khatib and C. Edwards, A survey-based study of grid traffic, in GridNets, 2007, pp. 4:1-4:8. [9]D. M. Batista, L. J. Chaves, N. L. S. da Fonseca, and A. Ziviani, Performance analysis of available bandwidth estimation tools for grid networks, The Journal of Supercomputing, vol. 53, pp. 103-121, 2010. [10]A. Fox and R. Griffith, Above the clouds: A Berkeley view of cloud computing, Dept. Electrical Eng. and Comput. Sciences, University of California, Berkeley, Rep. UCB/EECS, vol. 28, 2009. [11]L. M. Vaquero, L. Rodero-Merino, J. Caceres, and M. Lindner, A break in the clouds: towards a cloud definition, SIGCOMM Comput. Commun. Rev., vol. 39, pp. 50-55, 2008. [12]J. Staten, S. Yates, F. E. Gillett, W. Saleh, and R. A. Dines, Is cloud computing ready for the enterprise, Forrester Research, March, vol. 7, 2008. [13]P. M. a. T. Grance, Definition of cloud computing, Technical report, National Institute of Standard and Technology (NIST), July 2009. [14]D. F. Parkhill, The challenge of the computer utility: Addison-Wesley Reading, MA, 1966. [15]L. C. Q. Zhang, and R. Boutaba, Cloud computing: state-of-theart and research challenges, J. Internet Services and Applications, 2010. [16]I. W. Habib, Q. Song, Z. Li, and N. S. V. Rao, Deployment of the GMPLS control plane for grid applications in experimental high-performance networks, Communications Magazine, IEEE, vol. 44, pp. 65-73, 2006. [17]T. Lehman, J. Sobieski, and B. Jabbari, DRAGON: a framework for service provisioning in heterogeneous grid networks, Communications Magazine, IEEE, vol. 44, pp. 84-90, 2006. [18]W. Guo, W. Sun, Y. Jin, W. Hu, and C. Qiao, Demonstration of joint resource scheduling in an optical network integrated computing environment [topics in optical communications], Communications Magazine, IEEE, vol. 48, pp. 76-83, 2010. [19]I. Foster, Y. Zhao, I. Raicu, and S. Lu, Cloud computing and grid computing 360-degree compared, in Grid Computing Environments Workshop, 2008, pp. 1-10. [20]D. Batista and N. da Fonseca, A survey of self-adaptive grids, Communications Magazine, IEEE, vol. 48, pp. 94-100, 2010. [21]H.-c. Yang, A. Dasdan, R.-L. Hsiao, and D. S. Parker, Map-reduce-merge: simplified relational data processing on large clusters, in Proceedings of the 2007 ACM SIGMOD international conference on Management of data, 2007, pp. 1029-1040. [22]M. Stonebraker, The case for shared nothing, Database Engineering Bulletin, vol. 9, pp. 4-9, 1986. [23]J. Dean and S. Ghemawat, MapReduce: a flexible data processing tool, Commun. ACM, vol. 53, pp. 72-77, 2010. [24]T. Condie, N. Conway, P. Alvaro, J. M. Hellerstein, K. Elmeleegy, and R. Sears, MapReduce online, presented at the Proceedings of the 7th USENIX conference on Networked systems design and implementation, San Jose, California, 2010. [25]Y. Gu and R. L. Grossman, Lessons learned from a year's worth of benchmarks of large data clouds, presented at the Proceedings of the 2nd Workshop on Many-Task Computing on Grids and Supercomputers, Portland, Oregon, 2009. [26]H. W. Kuhn, The Hungarian method for the assignment problem, Naval research logistics quarterly, vol. 2, pp. 83-97, 1955. [27]R. Burkard, Assignment problems: Recent solution methods and applications, System Modelling and Optimization, pp. 153-169, 1986. [28]D. S. Johnson and M. R. Garey, Computers and Intractability: A Guide to the Theory of NP-completeness, Freeman&Co, San Francisco, 1979. [29]R. L. Graham, Bounds for certain multiprocessing anomalies, Bell System Technical Journal, vol. 45, pp. 1563-1581, 1966. [30]R. L. Graham, Bounds on multiprocessing timing anomalies, SIAM Journal on Applied Mathematics, vol. 17, pp. 416-429, 1969. [31]J. K. Lenstra, D. B. Shmoys, and E. Tardos, Approximation algorithms for scheduling unrelated parallel machines, Mathematical programming, vol. 46, pp. 259-271, 1990. [32]J. Aspnes, Y. Azar, A. Fiat, S. Plotkin, and O. Waarts, On-line routing of virtual circuits with applications to load balancing and machine scheduling, Journal of the ACM (JACM), vol. 44, pp. 486-504, 1997. [33]K. Birman, G. Chockler, and R. van Renesse, Toward a cloud computing research agenda, SIGACT News, vol. 40, pp. 68-80, 2009. [34]M. Zaharia, A. Konwinski, A. D. Joseph, R. Katz, and I. Stoica, Improving mapreduce performance in heterogeneous environments, 2008, pp. 29-42.
|