|
1. Numerical Data and Functional Relationships in Science and Technology./v.22, Subvolume a. Intrinsic Properties of Group ⅣElements and Ⅲ-Ⅴ, Ⅱ-Ⅵ andⅠ-Ⅶ Compounds., Berlin: Springer-Verlag (1987). 2. K. Vanhausden, W. L. Warren, C. H. Seager, D. R. Tallant, J. A. Voigt, B. E. Gnade, “Mechanisms behind green photoluminescence in ZnO phosphor powders”, J. Appl. Phys. 79, 7983 (1996). 3. T. G. Peason, “The chemical background of the aluminum industry”, Monograph of the Royal Institute of Chemistry, London (1955). 4. M. Nguefack, A. F. Popa, S. Rossignol, C. Kappenstein, “Preparation of alumina through a sol-gel process. Synthesis, characterization, thermal evolution and model of intermediate boehmite” Phys. Chem. Chem. Phys., 5 , 4279 (2003). 5. J. Peric, R. Krstulovic, M. Vucak, “Investigation of dehydroxylation of gibbsite into boehmite by DSC analysis”, J. Therm. Anal., 46, 1339 (1996). 6. L. Candela, D. D. Perlmutter, “Kinetics of boehmite formation by thermal decomposition of gibbsite”, Ind. Eng. Chem. Res., 31, 694 (1992). 7. D. Mishra, S. Anand, R. K. Panda, R. P. Das, “Hydrothermal preparation and characterization of boehmites”, Mater. Lett., 42, 38 (2000). 8. D. Panias, A. Krestou, “Effect of synthesis parameters on precipitation of nanocrystalline boehmite from aluminate solutions”, Powder Technology, 175, 163 (2007). 9. X. Bokhimi, J. A. Toledo-Antonio, M. L. Guzman-Castillo, F. Hernandez-Beltran, “Relationship between crystallite size and bond lengths in boehmite”, J. Solid State Chem., 159, 32 (2001). 10. H. Ginsberg, W. Huttig, H. Stiehl, “Über die Fällung von Aluminiumhydroxiden aus Aluminatlaugen und Salzlösungen. Ein Beitrag zum System H2O/Al2O3”, Z. Anorg. Allg. Chem., 309, 233 (1961). 11. Z. P. Xie, J. W. Lu, “Influence of alpha-alumina seed on the morphology of grain growth in alumina ceramics from Bayer aluminum hydroxide”, Materials Letters, 57, 2501 (2003). 12. K. E. Evan, Chemistry of Aluminum, 258 (1993). 13. Z. P. Xie, J. W. Lu, “Influence of different seeds on transformation of aluminum hydroxides and morphology of alumina grains by hot-pressing”, Materials & Design, 24, 209 (2003). 14. G. K. Chuah, “The effect of digestion on the surface area and porosity of alumina”, Microporous and Mesoporous Materials, 37, 345 (2000). 15. G. Beyer, Fire Mater., 25, 193 (2001). 16. T. R. Hull, D. Price, “An investigation into the decomposition and burning behaviour of Ethylene-vinyl acetate copolymer nanocomposite materials”, Polymer Degradation and Stability, 82, 365 (2003). 17. M. Machida, M. Takenami, H. Hanada, “Intercalation of pseudo-boehmite: a novel preparation route to microporous Al–Ti oxide”, Solid State Ionics, 172, 125 (2004). 18. B. R. Baker, R. M. Pearson, “Water content of pseudoboehmite: A new model for its structure”, J. Catal., 33, 265 (1974). 19. A. Vijay, G. Mills, H. Metiu, “Structure of the (001) surface of γ alumina”, J. Chem. Phys., 117(9), 4509 (2002). 20. F. H. Streitz, J. W. Mintmire, “Energetics of aluminum vacancies in gamma alumina”, Phys. Rev. B, 60, 773 (1999). 21. Z. Q. Yu, D. Chang, C. Li, N. Zhang, Y. Y. Feng, Y. Y. Dai, “Blue photoluminescent properties of pure nanostructured γ–Al2O3”, Mater. Res. Soc., 16(7), 1890 (2001). 22. 顏富士, 張沛翎, “奈米級 α-氧化鋁粉體─由三水鋁石談起”, 科學發展, 408, 12 (2006). 23. G. S. Huang, X. L. Wu, Y. F. Mei, X. F. Shao, G. G. Siu, “Strong blue emission from anodic alumina membranes with ordered nanopore array”,J. Appl. Phys., 93(1), 582 (2003). 24. B. D. Evans, M. Stapelbroek, “Optical properties of the F+ center in crystalline Al2O3”, Phys. Rev. B, 18, 7089 (1978). 25. W. Chen, H. G. Tang, C. S. Shi, J. Dang, J. Y. Shi, Y. X. Zhou, S. D. Xia, Y. X. Wang, S. T. Yin, “Investigation on the origin of the blue emission in Titanium-doped sapphire -Is F+ color-center the blue emission center ”, Appl. Phys. Lett., 67, 317 (1995). 26. B. G. Draeger, G. P. Summers, “Defects in unirradiated alpha-Al2O3”, Phys. Rev. B, 19, 1172 (1979). 27. Y. Chen, D. M. Bagnall, H. Koh, K. Park, Z. Zhu, T. Yao, “Plasma assisted molecular beam epitaxy of ZnO on c-plane sapphire: Growth and characterization”, J. Appl. Phys., 84, 3912 (1998). 28. WebElements Periodic Table (http://www.webelements.com/). 29. W. J. Li, E. W. Shi, “Growth mechanism and growth habit of oxide crystals”, Journal of Crystal Growth, 203, 186 (1999). 30. L. Vayssieres, “Growth of arrayed nanorods and nanowires of ZnO from aqueous solutions”, Adv. Mater., 15, 464, (2003). 31. L. Vayssieres, K. Keis, S. –E. Lindquist, A. Hagfeldt, “Purpose-built anisotropic metal oxide material : 3D highly oriented microrod array of ZnO”, J. Phys. Chem. B, 105, 3350, (2001). 32. L. Vayssieres, K. Keis, A. Hagfeldt, S. –E. Lindquist, “Three-dimensional array of highly oriented crystalline ZnO microtubes”, Chem. Mater., 13, 4395, (2001). 33. J. Zhang, L. Sun, “Control of ZnO morphology via a simple solution route”, Chem. Mater., 14, 4172, (2002). 34. J. P. Jolivet, M. Gzara, J. Mazieres, J. Lefebvre, “Physicochemical study of aggregation in silver colloids”, J. Colloid Interface Sci., 107, 429 (1985). 35. A. López-Macipe, J. Gómez-Morales, R. Rodríguez-Clemente, “The Role of pH in the Adsorption of Citrate Ions on Hydroxyapatite”, J. Colloid Interface Sci., 200, 114 (1998). 36. Z. R. Tian, J. A. Voigt, J. Liu, B. Mckenzie, M. J. Mcdermott, M. A. Rodriguez, H. Konishi, H. Xu, “Complex and oriented ZnO nanostructures”, Nature Material, 2, 821 (2003). 37. H. Zhang, D. Yang, D. Li, X. Ma, S. Li, D. Que, “Controllable Growth of ZnO Microcrystals by a Capping-Molecule-Assisted Hydrothermal Process”, Crystal Growth & Desigh, 5(2), 547 (2005). 38. C. L. Kuo, T. J. Kuo, M. H. Huang, “Hydrothermal Synthesis of ZnO Microspheres and Hexagonal Microrods with Sheetlike and Platelike Nanostructures”, J. Phys. Chem. B, 109, 20115 (2005). 39. J. Liang, J. Liu, Q. Xie, S. Bai, W. Yu, Y. Qian, “Hydrothermal Growth and Optical Properties of Doughnut-Shaped ZnO Microparticles”, J. Phys. Chem. B, 109, 9463 (2005). 40. T. Zhang, W. Dong, M. K.-Brewer, S. Konar, R. N. Njabon, Z. R. Tian, “Site-Specific Nucleation and Growth Kinetics in Hierarchical Nanosyntheses of Branched ZnO Crystallites”, J. Am. Chem. Soc., 128(33), 10960 (2006). 41. X. T. Zhang, Y. C. Liu, Z. Z. Zhi, J. Y. Zhang, Y. M. Lu, D. Z. Shen, X. G. Kong, “Temperature dependence of excitonic luminescence from nanocrystalline ZnO films”, J. Lumin., 99, 149 (2002). 42. K. Vanheusden, W. L. Warren, C. H. Seager, D. R. Tallant, J. A. Voigt, and B. E. Gnade, “Mechanisms behind green photoluminescence in ZnO phosphor powders”, J. Appl. Phys. 79, 7983 (1996). 43. C.J. Pan, C.W. Tu, C.J. Tun, C.C. Lee, G.C. Chi, “Structural and optical properties of ZnO epilayers grown by plasma-assisted molecular beam epitaxy on GaN/sapphire (0 0 0 1)”, J. Crys. Grow., 305, 133 (2007). 44. B. Lin, Z. Fu, Y. Jia, “Green luminescent center in undoped zinc oxide films deposited on silicon substrates”, Appl. Phys. Lett.,79(7), 943 (2001). 45. W. Li, D. Mao, F. Zhang, X. Wang, X. Liu, S. Zou, Y. Zhu, Q. Li, “Characteristics of ZnO:Zn phosphor thin films by post-deposition annealing”, Nucl. Instr. and Meth. in Phys. Res. B, 169, 59 (2000). 46. S. Bethke, H. Pan and B. W. Wessels, “Luminescence of heteroepitaxial zinc oxide”, Appl. Phys. Lett., 52, 138 (1988). 47. H. J. Ko, Y. F. Chen, S. K. Hong, H. Wenisch, T. Yao, D. C. Look, “Ga-doped ZnO films grown on GaN templates by plasma-assisted molecular-beam epitaxy”, Appl. Phys. Lett., 77, 3761 (2000). 48. 陳虹蓓,國立交通大學材料科學工程學系碩士論文 (2004). 49. R. C. Wang, C. P. Liu, J. L. Huang, S. J. Chen, “Single-crystalline AlZnO nanowires/nanotubes synthesized at low temperature”, Appl. Phys. Lett., 88(1), 1 (2006). 50. H. W. Lee, S. P. Lau, Y. G. Wang, K. Y. Tse, H. H. Hng, B. K. Tay, “Structural, electrical and optical properties of Al-doped ZnO thin films prepared by filtered cathodic vacuum arc technique”, J. .Crys. Grow., 268, 596 (2004). 51. E. Burstein, Phys. Rev., 25, 7826 (1982). 52. Y. R. Ryu, S. Zhu, D. C. Look, J. M. Wrobel, H. M. Jeong, H. W. White, “Synthesis of p-type ZnO films”, J. Crystal Growth, 216, 330 (2000). 53. M. Yan, H. T. Zhang, E. J. Widjaja, R. P. H. Chang, “Self-assembly of well-aligned gallium-doped zinc oxide nanorods”, J. Appl. Phys., 94, 5240 (2003). 54. J. J. Wu, S. C. Liu, ”Low-Temperature Growth of Well-Aligned ZnO Nanorods by Chemical Vapor Deposition”, Adv. Mater., 14, 215 (2002).
|