跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.110) 您好!臺灣時間:2025/09/27 10:07
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:鄭彥文
研究生(外文):Yen-Wen Chen
論文名稱:膠囊式防護衣內即時熱應力個人監控器之建構及其穿戴對手部靈敏度的影響
論文名稱(外文):Construction of Real-time Personal Heat Stress Monitor used in Encapsulating Protective Clothing and the Effects of Wearing Encapsulating Protective Clothing on Hand Dexterity
指導教授:宋鵬程宋鵬程引用關係
指導教授(外文):Peng-Cheng Sung
學位類別:碩士
校院名稱:朝陽科技大學
系所名稱:工業工程與管理系碩士班
學門:工程學門
學類:工業工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:59
中文關鍵詞:熱應力靈敏度小環境氣候狀況膠囊式防護衣
外文關鍵詞:heat stressEPCmicroenvironmentdexterity
相關次數:
  • 被引用被引用:3
  • 點閱點閱:558
  • 評分評分:
  • 下載下載:18
  • 收藏至我的研究室書目清單書目收藏:0
熱應力是廣為人知引起的熱疾病傷害的工業安全衛生危害,對於必須穿著膠囊式防護衣Encapsulating Protective Clothing(EPC)工作的工作者更是如此。如工作於建築、精鍊、石棉清除、化學實驗室、有害毒物清除場所活動或是在精密鑄造廠中,都必須穿著EPC防護衣執行任務,容易加深熱環境之熱對身體傷害的影響,影響工作者的健康,也影響工作生產力。
針對穿戴防護衣工作者的熱應力暴露監控仍局限於一般的大環境(周圍環境)評估方法,此方法如果低估熱應力,工作者容易導致增加熱應力疾病傷害風險。如果高估熱應力而進行控制措施,也許會導致生產力損失。必須即時監控評估工作者防護衣內部小環境氣候和工作者生理狀況的方法來評估熱應力。並探討身穿防護衣對於靈敏度的影響。
本研究第一目的為整合一具即時個人監控器,用溫、溼度感應器評估EPC內部小環境氣候狀況,心搏率、耳溫和皮膚溫評估工作者生理狀況狀況。並以連續回報方式監控。第二目的為比較徒手、穿戴手套、穿戴手套與防護衣三種不同狀況下,進行木栓板實驗的完成時間對靈敏度影響。
整合後個人監控器可以用來監控工作者身穿EPC內部,以溫溼度感應元件SHT15評估小環境氣候及用皮膚溫度溫度感應晶片LM-92、耳溫溫度感應晶片MLX90614、心搏率量測手錶POLAR S810評估生理狀況,透過Borland C++ Builder 6.0軟體撰寫之程式介面將數據獨立顯示出來。徒手完成時間(45.97±5.87秒)和穿戴手套(127.36 ±47.96秒)和防護衣完成時間(129.44±48.76秒)有明顯的差異,而徒手有較佳的靈敏度。
Heat stress is a well-known industrial safety hazard that causes heat injury. It is more hazardous to those who have to wear Encapsulating Protective Clothing (EPC) during work. People doing this kind of jobs such as construction、refinement、asbestos purgation、chemical experiment、poison purgation or exact commercial foundry, have to wear Encapsulating Protective Clothing(EPC) while performing their tasks. Wearing EPC is easier to increase the heat from environment to human body, then, affect the worker’s health and productivity.
The heat stress monitor of the workers who don’t wear EPC is still limited to normal environment condition. If the heat stress is being underestimated, the workers would easily increase the risk of getting hurt by heat stress. If being overestimated, the control measures would probably lead to the reduction of productivity. We have to monitor the heat stress inside of microenvironment worn by workers and their physiology condition immediately and discuss the effect of wearing EPC to the dexterity.
The first research goal is to integrate a personal monitor. We can measure the microenvironment inside the EPC by using the temperature and wet sensors、heartbeat rate、tympanic thermometry and thermography. The second research goal is to compare the length of finishing time of pegboard tasks under three different situations “barehanded”, “gloved” and “gloved EPC” and see how it affects the dexterity.
The integrated personal monitor can be used to monitor the inside of EPC worn by workers, using SHT15 to estimate the climate of microenvironment, LM-92 to estimate the skin temperature、tympanic thermometry sensors-MLX90614 to estimate the ear temperature、POLAR S810 to estimate the physiology situation.The data will be shown immediately through a Borland C++ Builder 6.0 system. There is a big difference between the barehanded (45.97±5.87 s), gloved hand (127.36±47.96 s) and EPC worn (129.44±48.76’s) conditions. Furthermore, the dexterity of the bare hand is better than the other conditions.
摘 要 I
Abstract II
誌 謝 IV
目 錄 V
表目錄 VII
圖目錄 IX
第一章 緒論 1
1.1 研究背景與動機 1
1.2 研究目的 3
1.3 研究架構 3
第二章 文獻回顧 4
2.1膠囊式防護衣(EPC) 4
2.2 環境評估 4
2.3 工作上生理限制 6
2.4 手套靈敏度(DEXTERITY) 9
第三章 研究方法與步驟 12
3.1熱應力個人監控器之建構 12
3.1.1溫度校正 18
3.2 防護衣 19
3.3實驗者 21
3.3.1 靈敏度實驗 23
3.3.2 木栓板靈敏度實驗程序 24
3.4 統計分析 26
第四章 研究結果 27
4.1熱應力個人監控器整合 27
4.1.1溫度較正 29
4.2 手部靈敏度數據分析 30
4.2.1 重複測量變異數分析 30
4.2.2 皮爾森相關系數 31
4.2.3逐步回歸順向、逆向分析結果 33
第五章 討論 47
5.1 熱應力個人監控器 47
5.2 手部靈敏度 49
第六章 結論與未來展望 51
6.1 結論 51
6.1 未來展望 51
參考文獻 52
附錄一受測者同意書 59
表目錄
表2.1 每小時作息時間比例之時量平均綜合溫度熱指數值(℃)閾值 6
表2.2 熱適應建議時程 9
表3.1 XBee晶片腳位 14
表3.2 SHT15規格 15
表3.3 LM-92晶片腳位說明 16
表3.4 防護衣特性 20
表3.5 全罩式防毒面具規格 21
表3.6 安全雨鞋規格 21
表3.7 防酸鹼、溶劑手套規格 21
表3.8 人體計測值平均值與標準差 22
表4.1 感應器量測平均溫度 30
表4.2 完成時間平均值及標準差 31
表4.3 三種狀態變異數分析 31
表4.4 三種狀況完成時間之LSD事後檢定 31
表4.5 皮爾森相關系數 33
表4.6 徒手逐步回歸順向選擇法所得出預估模式 34
表4.7 徒手逐步回歸順向選擇法係數表 34
表4.8 徒手逐步回歸逆向選擇法所得出預估模式 35
表4.9 徒手逐步回歸逆向選擇法係數表 38
表4.10 穿戴手套逐步回歸順向選擇法所得出預估模式 38
表4.11 穿戴手套逐步回歸順向選擇法係表 40
表4.12 穿戴手套逐步回歸逆向選擇法 40
表4.13 穿戴手套逐步回歸逆向選擇法系數表 42
表4.14 穿戴手套和防護衣逐步回歸順向選擇法所得出預估模式 42
表4.15 穿戴手套和防護衣逐步回歸順向選擇法系數表 43
表4.16 穿戴手套和防護衣逐步回歸逆向選擇法 44
表4.17 穿戴手套和防護衣逐步回歸逆向選擇法系數表 46
表5.1 心博率恢復標準 47
表5.2 徒手完成時間逐步回歸順向選擇法重要系數 49
表5.3 徒手完成時間逐步回歸逆向選擇法重要系數 49
表5.4 穿戴手套完成時間逐步回歸順向選擇法重要系數 50
表5.5 穿戴手套完成時間逐步回歸逆向選擇法重要系數 50
表5.6 穿戴手套與防護衣完成時間逐步回歸順向選擇法重要系數 50
表5.7 穿戴手套與防護衣完成時間逐步回歸逆向選擇法重要系數 50

圖目錄
圖2.1 人體恆溫作用機轉 8
圖3.1 傳送與接收圖 13
圖3.2 C8051F314微處理器 14
圖3.3 XBee晶片 14
圖3.4 溫濕度感應元件為:SHT15 15
圖3.5 SHT15腳位分配 15
圖3.6 皮膚溫度感應晶片:LM-92晶片 16
圖3.7 耳溫溫度感應元件MLX90614 17
圖3.8 MLX90614腳位 17
圖3.9 心搏率POLAR S810 17
圖3.10 POLAR-心率傳輸帶 18
圖3.11 POLAR-心率傳輸帶佩戴位置 18
圖3.12 POLAR-USB傳輸端 18
圖3.13 以燒杯進行溫度校正實驗情形 19
圖3.14 防護衣 20
圖3.16 安全雨鞋 21
圖3.17 防酸鹼、溶劑手套 21
圖3.18 Mitutoyo數位式游標卡尺 23
圖3.19 捲尺 23
圖3.20 木栓板實驗儀器 24
圖3.21 實驗者徒手實驗姿勢 24
圖3.22 實驗流程圖 25
圖3.23 穿戴手套實驗 25
圖3.24 穿戴手套和防護衣實驗 26
圖4.1 溫溼度感測元件與無線傳送器 27
圖4.2 耳溫及皮膚溫元件與無線傳送器 27
圖4.3 實驗室自製無線接收器 28
圖4.4 感應元件配置位置 29
圖4.5 數據程式介面 29
圖5.1 核心溫度顯示介面 48
1. ACHIG 2001 TLVs and BEIs, “Threshold Limit Values for Chemical
Substances and Physical Agents and Biological Exposure Indices”,
American Conference of Governmental Industrial Hygienists, Cincinnati,
Ohio, p. 169.
2. NIOSH 1985, “Occupational safety and health guidance manual for
hazardous waste site activities, National Institute for Occupational Safety
and Health” ,Washington DC, USA.
3. NIOSH 1986, “Occupational exposure to hot environments, Revised
Criteria, National Institute for Occupational Safety and Health ”,
Washington DC, USA.
4. Thomas E.B., Ronald R.C., “Case Study Heat stress management :Case
study in an aluminum smelter”, International Journal of Industrial
Ergonomics 23 (1999) 609Ð620
5. Central Weather Bureau, http://www.cwb.gov.tw, Taiwan.
6. CCOHS, http://www.ccohs.ca/oshanswers/phys_agents/heat_health.html,
Canadian Centre for Occupational Health and Safety
7. Bishop, B. ,Gu, D.L, and Clapp, A. 2000, “Climate under impermeable
protective clothing”, International Journal of Industrial Ergonomics, 25, pp.
233-238.
8. Bernard, T. E., and Kenney, W. L. 1994, “Rational for a personal monitor
for heat strain”, American Industrial Hygiene Association Journal, 55(6),
pp. 505-514.
9. Reneau, P. D., and Bishop, P. A. 1996, “Validation of a personal heat stress
monitor”, American Industrial Hygiene Association Journal, 57, pp.
650-667
10. Quest Technologies, Inc.http://www.quest-technologies.com, Oconomowoc, WI, USA
11. Metrosonics, http://www.metrosonics.com, Rochester, NY, USA.
12. Mini-Mitter Co., http://www.minimitter.com/, VitalSense – Telemetric
System for Remote Monitoring of Ambulatory Humans, Sunriver, OR, USA
13. Karen, E.C,J.M.M.B, “Climatic stress in the workplace” , Applied
Ermwmmics Vol26, No. 1, pp. 29-34. 1995.
14. Furth, H., Jamer., “Reinjury prevention Follow-Thorgh for Clients with
Cumulative Trauma Disorders” , the American Journal of Occupational
Therapy, 48(02):890-898,1994.
15. 環安中心 ,http://www.tsint.edu.tw/admins/safety/index1.htm
16. Thomas E.B., Fasiha. .M., “Evaporative resistance and sustainable work
under heat stress conditions for two cloth anticontamination ensembles”,
International Journal of Industrial Ergonomics 23 (1999) 557-564.
17. Phillip, B., Dingliang, G.., and Anthony, C., “ Climate under impermeable
protective clothing”, International Journal of Industrial Ergonomics 25
(2000) 233}238.
18. Y. LI, “ Perceptions of temperature, moisture and comfort in clothing during
environmental transients”, Ergonomics, Vol. 48, No. 3, 22 February 2005,
234 – 248.
19. E. Kähkönen, D. Swai, E. Dyauli and R. Monyo., “ Estimation of heat
stress in Tanzania by using ISO”, Applied Ergonomics Volume 23, Issue
2, April 1992, Pages 95-100
20. Dianne,.S.W, “A review heat stress research with application to forestry”,
Applled Ergonomics Vol.29,No. 3,pp. 179-183, 1998
21. Alfons, F., Peter, M., & Hortense, N., “Comparison of laboratory studies
with predictions of the required sweat rate index (ISO 7933) for climates
with moderate to high thermal radiation”, Applied Ergonomics 32 (2001)
299} 303.
22. OSHATechnicalManual,
http://www.osha.gov/dts/osta/otm/otm_iii/otm_iii_4.html.
23. 戴基福,「行政院勞工委員會勞工安全衛生研究所」。
24. Peter, M., Peter, B& Barbara, G, “Gender-related difference in sweat loss
and its impact on exposure limits to heat stress”, International Journal of
Industrial Ergonomics 29 (2002) 343–351.
25. Katherine R. Newsham, MA, ATC, Jan E. Saunders, DO, Eric S. Nordin,
DO, “Comparison of Rectal and Tympanic Thermometry During
Exercise” ,Southern Medical Association 803-810, 2002. © 2002
26. Jun-ichi S.,Seung U.K, “HSP72 induction by heat stress in human neurons
and glial cells in culture” , Volume 653, Issues 1-2, 8 August 1994, Pages
243-250
27. K. E. Cooper , W. I. Cranston , and E. S. Snell., “Temperature in the
external auditory meatus as an index of central temperature changes”., J
Appl Physiol 19: 1032-1034, 1964; 8750-7587/64.
28. Heidenreich, T., Giuffre, M. (1990)., “Postoperative Temperature
Measurement”., Nursing Research, 89(3), 153-155.
29. 莊侑哲、葉文裕、蔡朋枝、林宜長,「熱環境作業之行政管理」,2003.10
╱工業安全衛生月刊。
30. Eastman Kodak Company 1983, “Ergonomic Design for People at Work
Volume I: Workplace, Equipment, and Environmental Design and
Information Transfer,” Eastman Kodak Company, Van Nostrand Reinhold,
New York.
31. 石裕川、傳鑫凌、王茂駿,「手套對工作中不同施力型態之影響」,行
政院勞工安全衛生研究(1995)。
32. Nelson, J.B. and Mital, A. 1995, “ An ergonomic evaluation of dexterity and
tactility with increase in examination/surgical glove thickness”,
Ergonomics, 38, pp. 723-733.
33. Bellingar, T. and Slocum, A.C. 1993, “ Effect of protective gloves on hand
movement: an exploratory study”, Applied Ergonomics, 24, pp. 244-250
34. Kovacs K, Splittstoesser R, Maronitis A, Marras WS. 2002, “Grip force and
muscle activity differences due to glove type”, American Industrial Hygiene
Association Journal, 63, pp. 269-74.
35. Novak,C.B.,Megan,J.,Patterson,M.and Mackinnon, S.E. 1998, “Evaluation
of hand sensibility with single and double latex gloves”, Plastics and
Reconstructive Surgery, 103, pp. 128-131.
36. 行政院勞工委員會勞工安全衛生研究所, 「人因工程肌肉骨骼傷害預防
指引」 (2002)。
37. 黃軍朗,「握把式軌跡球之研究」,碩士論文,中原大學,桃園(2004)。
38. 徐秀雲,「手指感覺與捏力控制間之相關性探討」,碩士論文,國立成
功大學,台南(2006)。
39. 洪瑞凱,「光纖手套資訊擷取與分析系統」,碩士論文,國立中山大學,
高雄(2005)。
40. Dragan, B and Michel, B. D. 2003, “Finger dexterity, skin temperature, and
blood flow during auxiliary heating in the cold”, J Appl Physiol 95:
758-770.
41. Bishu, R.R. and Klute, G. 1995, “The effects of extra vehicular activity
(EVA)gloves on human performance”, International Journal of Industrial
Ergonomics, 16,165-174.
42. Nelson, J.B. and Mital, A. 1995, “An ergonomic evaluation of dexterity and
tactility with increase in examination/surgical glove thickness”,
Ergonomics, 38 (4),723-733
43. Johnson, R.F. and Sleeper, L.A. 1986, “Effects of chemical protective
handwear and headgear on manual dexterity”, Proceedings of the Human
Factors Society-30th Annual Meeting, 994-998.
44. HINES, M. and O’CONNOR, J.1926, “A measure of finger dexterity”,
Journal of Personnel Research, 4, 379-382. 32.Purdue, P.F. 1984 “Examiner
manual for the Purdue pegboard”. Chicago: Science Research Associates.
45. Pur R.F.,1948, “Examiner manual for the Purdue pegboard”. Chicago :
Science Research Associates.
46. Bensel, C.K. 1993, “ The effects of various thickness of chemical protective
gloves on manual dexterity”, Ergonomics, 36 (6), 687-696.
47. Bensel, C.K. 1980, “A human factors evaluation of two types of rubber CB
protective gloves ”(Technical Report NATICK/TR-80/005). Natick, MA:
US Army Natick Research and development command.
48. BENNETT, G. K. 1981, “Hand-Tool Dexterity Test Manual, rev. edn”.
Harcourt Brace Jovanovich, San Antonio, TX.
49. DEPARTMENT OF THE ARMY 1974, “M16A1 rifle and rifle and
marksmanship, Field Manual fm 23-9”, Department of the Army,
Headquarters, Washington, DC.
50. Moore, B.J., Solipuram, S.R. and Riley, M.W. 1995, “The effects of latex
examination gloves on hand function: A pilot study”, Proceeding of the
Human Factors Society-39th annual meeting, 582-585.
51. Plummer, R., Stobbe, T., Ronk, R., Myers, W., Kim, H. and Jaraiedi, M.
1985, “Manual dexterity evaluation of gloves used in handling hazardous
materials”, Proceeding of the Human Factors Society-29th annual meeting,
819-823.
52. Muralidhar, A., Bishu, R.R., and Hallbeck, M.S. 1999, “The development
and evaluation of an ergonomic glove”, Applied Ergonomics, 30,555-563.
53. SHT15, http://www.sensirion.com/, SENSIRION
54. LM-92, http://www.national.com/analog, NATIONAL
55. MLX90614, http://www.melexis.com/, Melexis
56. Polar, http://www.polar.fi/en/
57. Borland C++ Bulder 6.0, http://www.codegear.com/br
58. C8051F314,
https://www.silabs.com/Support%20Documents/TechnicalDocs/C8051F314
_short.pdf
59. XBee,
http://www.digi.com/products/wireless/point-multipoint/xbee-series1-modul
e.jsp58.
60. ZigBee Alliance, http://www.ZigBee.org/
61. 電子工程專輯, http://www.eettaiwan.com/ART_8800377631
617723_NT_1d6bfe73.HTM
62. 李俊賢,「無線感測網路與ZigBee 協定簡介」,電信國家型科技計畫
NTP,2006第77期。
63. 電子系統專刊,
http://www.ed-china.com/ART_8800012909_400005_500005_OT_f2596c
a5.HTM
64. OLANREWAJU O., “A survey of hand anthropometry of female rural farm
workers in Ibadan, Western Nigeria”, ERGONOMICS, 2000, VOL. 43, NO.
65. Lafayette instrument,
http://www.lafayetteevaluation.com/product_list.asp?CatID=40
66. 林傑斌、林川雄、劉明德, 「SPSS 12統計建模與應用實務」,博碩文
化股份有限公司,台北(2004)
67. 顏月珠,「高等統計方法」,萬達打字印刷廠,頁679-694,台北(1994)
68. 陳建銓(Jiann-Chyuan Chen) 、邱挺棻(Tiing-Fen Chiou) 、徐茂銘
(Mow-Ming Hsu),「紅外線鼓膜溫度計測量中心體溫」,中華民國耳鼻
喉科醫學會雜誌 27卷2期95-102(1992)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top