跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.23) 您好!臺灣時間:2025/10/25 14:21
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:呂永方
研究生(外文):Yun Fang Lu
論文名稱:溶液中晶體成核與成長時之溶質群聚作用暨各式結晶槽之操作與控制
論文名稱(外文):The solute clustering during nucleation and crystal growth in a stirred solution and the operation and control for various crystallizers
指導教授:蕭立鼎
指導教授(外文):L. D. Shiau
學位類別:博士
校院名稱:長庚大學
系所名稱:化工與材料工程研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:98
論文頁數:263
中文關鍵詞:成核結晶聚集分離成核引發時間
外文關鍵詞:nucleationcrystallizationaggregationdissociationinduction period
相關次數:
  • 被引用被引用:14
  • 點閱點閱:795
  • 評分評分:
  • 下載下載:87
  • 收藏至我的研究室書目清單書目收藏:0
本論文分成兩部分。第一部份,研究攪拌溶液中成核與晶體成長其間溶質分子之溶質群聚過程。第二部分,詳細探討各式結晶槽之操作與控制。第一部份發展出一套動力模式來模擬攪拌溶液中成核期間因溶質分子聚集與分離之溶質群聚現象。溶質群聚體是經由粒子連續碰撞形成,且當群聚體達到臨界晶核大小時將變成一穩定晶核。於此期間,因熱力學的不穩定,在群聚體達到臨界晶核大小前,聚集過程中的群聚體可能分離。聚集與分離速率常數可由實驗之成核引發時間數據並配合提出的模式所求得。假設於成核引發時間之平均群聚體大小達到臨界晶核大小時,本模式可成功應用決定出碳酸鈣均質成核之成核引發時間。此外,並提出一模式來模擬攪拌溶液中成長晶體周圍擴散層之溶質群聚過程。聚集與分離速率常數可由先前之碳酸鈣均質成核獲得,用以決定成長中碳酸鈣沈澱周圍擴散層之數目-平均群聚程度與群聚體粒徑分佈。詳細探討過飽和、擴散層厚度及溫度對擴散層中之數目-平均群聚程度及溶質群聚體粒徑分佈之影響。此部分所獲得之結果將可說明攪拌溶液中成核與晶體成長期間溶質分子之溶質群聚過程。結晶在化學工業上有非常廣泛之應用。對於晶體產品形狀、大小及粒徑分佈之需求取決於結晶槽種類之選擇。第二部份詳細研究各式結晶槽之操作與控制,包含批次冷卻結晶槽、具迴流多段式連續均混出料結晶槽及具迴流之連續式流體化床結晶槽。依結晶槽種類,以粒數均衡為基礎發展出各式模式,檢視設計與操作參數對晶體產品之晶體粒徑分佈結果之影響。晶體混合不均可重要至影響到攪拌結晶槽之整體性能,因此也將研究在非理想攪拌結晶槽中,因晶體重力所造成之晶體懸浮不均現象。此部分之模擬結果可提供各式工業結晶槽設計與操作之重要資訊。
This thesis is divided into two parts. In the first part, the solute clustering process of solute molecules during nucleation and crystal growth is studied in a stirred solution. In the second part, the operation and control for various crystallizers is investigated in detail. In the first part, a kinetic model is developed to simulate the solute clustering due to the aggregation and dissociation of solute molecules during nucleation in a stirred solution. Solute clusters are formed through a series of particle collisions and become stable nuclei when clusters reach the critical nucleus size. Meanwhile, solute clusters might dissociation in the aggregation process due to the thermodynamic instability before clusters reach the critical nucleus size. The aggregation and dissociation rate constants can be recovered by fitting the experimental induction period data with the proposed model. This model is successfully applied to determine the induction period of CaCO3 homogeneous nucleation by assuming that the mean cluster size reaches critical nucleus size at the induction period. In addition, a model is proposed to simulate the solute clustering process in the diffusion layer around a growing crystal in a stirred solution. The aggregation and dissociation rate constants recovered previously for homogeneous nucleation of CaCO3 are employed to determine the number-average degree of clustering and the cluster size distribution in the diffusion layer around a growing CaCO3 precipitate. The effects of supersaturation, diffusion layer thickness and temperature on the number-average degree of clustering and the size distribution of solute clusters in the diffusion layer are studied in detail. The obtained results of this part will elucidate the solute clustering process of solute molecules during nucleation and crystal growth in a stirred solution. Crystallization has very broad applications in the chemical industry. The required shape, size and size distribution of the product crystals depends on the type of crystallizer selected. In the second part, the operation and control for various crystallizers, including a batch cooling crystallizer, a continuous multi-stage MSMPR (mixed-suspension, mixed-product-removal) crystallizer with recycle flow, and a continuous fluidized bed crystallizer with liquor recycling, is investigated in detail. Depending on the type of crystallizer, various models are developed based on the population balance to examine the effects of the design and operating parameters on the resulting CSD (crystal size distribution) of the product crystals. As the nonhomogeneous mixing of crystals can significantly influence the overall performances of a stirred crystallizer, the nonhomogeneous suspension of crystals due to the particle gravity in a non-ideal stirred-crystallizer is also studied. The simulation results of this part can provide valuable information for design and operation of various types of industrial crystallizers.
第一章 緒 論 1 1-1 過飽和及介穩區 1 1-2 成核 3 1-3 晶體成長 6 1-4 晶體粒徑分佈 8 參考文獻 16 符號說明 22 第二章 成核引發時間之動力研究 29 摘要 29 2-1 前言 29 2-2 模式 31 2-3 結果與討論 36 2-4 結論 40 參考文獻 41 符號說明 47 附錄 2A 60 附錄 2B 62 第三章 成長晶體周圍擴散層之溶質群聚模式 63 摘要 63 3-1 前言 63 3-2 模式 65 3-3 結果與討論 70 3-4 結論 73 參考文獻 74 符號說明 80 第四章 碳酸鈣成長晶體周圍擴散層之群聚體粒徑分佈 88 摘要 88 4-1 前言 88 4-2 模式 90 4-3 結果與討論 95 4-4 結論 98 參考文獻 100 符號說明 105 第五章 批次結晶槽之冷卻模式對晶體粒徑分佈影響研究 117 摘要 117 5-1 前言 117 5-2 模式 119 5-3 結果與討論 125 5-4 結論 132 參考文獻 133 符號說明 137 附錄 5A 156 第六章 具迴流多段式連續均混出料結晶槽之模式研究 157 摘要 157 6-1 前言 157 6-2 模式 159 6-3 結果與討論 161 6-4 結論 164 參考文獻 165 符號說明 168 第七章 連續攪拌結晶槽中晶體懸浮不均現象研究 181 摘要 181 7-1 前言 181 7-2 模式 182 7-3 結果與討論 189 7-4 結論 192 參考文獻 193 符號說明 195 第八章 具迴流之連續式流體化床結晶槽模式研究 212 摘要 212 8-1 前言 212 8-2 模式 214 8-3 結果與討論 218 8-4 結論 222 參考文獻 224 符號說明 227 第九章 結論 238
Allen,A. T., McDonald, M. P., Nicol, W. M. and Wood, R. M., Nature, 235, 36, 1972. Azuma, T., Tsukamoto, K. and Sunagawa, I., “Clustering phenomenon and growth units in lysozyme aqueous solution as revealed by laser light scattering method,” Journal of Crystal Growth, 98, 371-376, 1989. Berglund. K. A., Kaufman, E. L. and Larson, M. A., “Growth of contact nuclei of potassium nitrate,” AIChE Journal, 29, 867-868, 1983. Berglund. K. A. and Larson, M. A., “Modeling of growth rate dispersion of citric acid monohydrate in continuous crystallizers,” AIChE Journal, 30, 280-287, 1984. Berthoud, A., “Theorie de la formation des faces d’un crystal,” Journal de Chimie Physique, 10, 624-653, 1912. Bohlin, M. and Rasmuson, A. C., “Importance of Macromixing in Batch Cooling Crystallization,” AIChE Journal, 42, 691-699, 1996. Chattopadhyay, S., Erdemir, D., Evans, J. M. B., Ilavsky, J., Amenitsch, H., Segre, C. U. and Myerson, A. S., “SAXS study of the nucleation of glycine crystals from a supersaturated solution,” Crystal Growth & Design, 5, 523-527, 2005. Frank, F. C., “The influence of dislocation on crystal growth,” Discussions of the Faraday Society, 5, 48-54, 1949. Frances, C., Biscans, B. and Laguerie, C., “Modelling of a continuous fluidized-bed crystallizer,” Chemical Engineering Science, 49, 3269-3276, 1994. Franck, R., David, R., Villermaux, J. and Klein, J. P., “Crystallization and precipitation egineering-II. A chemical reaction engineering approach to salicylic acid precipitation: Modelling of batch kinetics and application to continuous operation,” Chemical Engineering Science, 43, 69-77, 1988. Guo, Z., Jones, A. G. and Li, N., “Interpretation of the ultrasonic effect on induction time during BaSO4 homogeneous nucleation by a cluster coagulation model,” Journal of Colloid and Interface Science, 297, 190-198, 2006. Gupta, B. S. and T. K. Dutta, “Effect of dispersions on CSD in continuous MSMPR crystallizers,” Chemical Engineering Technology, 13, 426-431, 1990. Hussmann, G. A., Larson, M. A. and Berglund K. A., Characterization of solution structure near the surface of a growing crystal by Raman spectroscopy, in“Industrial Crystallization 84,” Elsevier, Amsterdam, 1984. Jones, A. G., Crystallization Process Systems, Butterworth-Heinemann, 2002. Karpinski, P. H., “Importance of the two-step crystal growth model,” Chemical Engineering Science, 40, 641-646, 1985. Kim, K. J. and Mersmann, A., “Estimation of metastable zone width in different nucleation process,” Chemical Engineering Science, 56, 2315-2324, 2001. Kossel, W., “Zur energetic von oberflachenvorgangen,” Annalen der Physik, 21, 457-480, 1934. Larson, M. A. and Garside, J., “Solute clustering in supersaturated solutions,” Chemical Engineering Science, 41, 1285-1289, 1986. Liu, C. H., D. H. Zhang, C. G. Sun and Z. Q. Shen, “The modelling and simulation of a multistage crystallizer,” Chemical Engineering Journal,46, 9-14, 1991. McMahon, P., Berglund K. A. and Larson, M. A., Raman spectroscopy studies of the structure of supersaturated KNO3 solutions. In “Industrial Crystallization 84,” Elsevier, Amsterdam, 1984. Mersmann,A. and Bartosch, K. “How to predict the metastable zone width,” Journal of Crystal Growth, 183,240-250(1998). Mullin , J. W. and Leci, C. L., “Evidence of molecular cluster formation in supersaturated solutions of citric acid,” Philosophical Magazine, 19, 1075-1077, 1969. Mullin, J. W. and Nyvlt, J., “Design of classifying crystallizer,” Transactions of the Institution of Chemical Engineers, 57, 48, T7-T14. 1970. Mullin, J. W., Crystallization, Butterworth-Heinemann, 3nd Ed., London, UK, 1993. Myerson, A. S. and Lo, P. Y., “Diffusion and cluster formation in supersaturated solutions,” Journal of Crystal Growth, 99, 1048-1052, 1990. Nyvlt, J., O. Sohnel, M. Matuchova and M. Broul, The Kinetics of Industrial Crystallization, Chemical Engineering Monographs 19, Elsevier, Amsterdam, 1985. O’Hara, M. and R. C. Reid, Modelling Crystal Growth Rates From Solution, Englewood Cliffs: Prentice-Hall, 1973. Polak, W. and Sangwal, K., “Modelling the formation of solute clusters in aqueous solutions of ionic salts,” Journal of Crystal Growth, 152, 182-190, 1995. Qian, R. Y. and Botsaris, G. D., “A new mechanism for nuclei formation in suspension crystallizers: The role of interparticle forces,” Chemical Engineering Science, 52, 3429-3440, 1997. Ramanarayanan, K. A, Production and growth of contact nuclei, Ph. D. Dissertation, Iowa State University, Ames, 1982. Randolph, A. D., “The mixed suspension, mixed product removal crystallizer as a concept in crystallizer design,” AIChE Journel, 11, 424-430(1965). Randolph, A.D. and Tan, C., “Modeling size dispersion in the prediction of crystal-size distribution,” Chemical Engineering Science, 48, 1067-1076, 1977. Randolph, A.D. and White, E.T., “Numerical design techniques for staged classified recycle crystallizers: Examples of continuous alumina and sucrose crystallizers,” Industrial and Engineering Chemistry Process Design and Development, 17, 189, 1978. Randolph, A. D. and M. A. Larson, Theory of Particulate Processes, 2nd Ed., Academic Press, New York, U.S.A. 1988. Robinson, J. N. and J. E. Roberts, “A mathematical study of crystal growth in a cascade of agitator,” The Canadian Journal of Chemical Engineering, 29, 105-112(1957). Rusli, I. T., Schrader, G. L. and Larson, M. A., “Raman spectroscopic study of NaNO3 solution system - solute clustering in supersaturated solutions,” Journal of Crystal Growth, 97, 345-351, 1989 Sarkar, D., Rohani, S. and Jutan, A, “Multi-objective optimization of seeded batch crystallization processes,” Chemical Engineering Science, 61, 5282-5295, 2006. Sha, Z., Louhi-Kultanen, M., Ogawa, K. and Palosaari, S., “The effect of mixedness on crystal size distribution in a continuous crystallizer,” Journal of Chemical Engineering of Japan, 31, 55-60, 1998. Shanks, B. H. and Berglund. K. A., “Contact nucleation from aqueous sucrose solutions,” AIChE Journal, 31, 152-154, 1985 Shiau, L. D. and Berglund. K. A., “Growth kinetics of fructous crystals formed by contact nucleation,” AIChE Journal, 33, 1028-1033, 1987 Shiau, L. D., Cheng S. H. and Liu, Y. C., “Modelling of a fluidized-bed crystallizer operated in a batch mode,” Chemical Engineering Science, 54, 865-871, 1999. Shiau, L. D. and Lu, T. S., “Interactive effects of particle mixing and segregation on the performance characteristics of a fluidized bed crystallizer,” Industrial & Engineering Chemistry Research, 40, 707-713, 2001. Shiau, L. D. and Lu, T. S., “Modeling the nonideal mixing behavior in a continuous-stirred crystallizer,” Computers and Chemical Engineering, 30, 970-977, 2006. Sohnel, O., and Mullin, J., “A method for the determination of precipitation induction periods,” Journal of Crystal Growth, 44, 377-382, 1978. Synowiec, P., Jones, A. G. and Shamlou, P. A., “Crystal break-up in dilute turbulently agitated siuspensions,” Chemical Engineering Science, 48, 3485-3495, 1993. Tai, C. Y. and Chien, W. C., “Interpreting the effects of operating variables on the induction period of CaCl2-Na2CO3 system by a cluster coagulation model,” Chemical Engineering Science, 58, 3233-3241, 2003. Tai, C. Y., W. Chien, W. C., and Hsu, J. P., “Induction period of CaCO3 interpreted by the Smoluchowski's coagulation theory,” AIChE Journal, 51, 480-486, 2005. Tavare N. S., Garside, J. and Larson, M. A., “Crystal size distribution from a cascade of MAMPR crystallizers with magma recycle,” Chemical Engineering Communications, 47, 185-199, 1986. Tavare, N. S., “Mixing in continuous crystallizers,” AIChE Journal, 32, 705-732, 1986. Tavare, N. S., Industrial Crystallization:Proceess simulation analysis and design, Plenum Press, New York, 1995. Ulrich, J. and Strege, C., “Some aspects of the importance of metastable zone width and nucleation in industrial crystallizers,” Journal of Crystal Growth, 237, 2130-2135, 2002. van der Leeden, M. C., Kashchiev, D. and Van Rosmalen, G. M., “Precipitation of barium sulfate: Induction time and the effect of an additive on nucleation and growth,” Journal of Colloid and Interface Science, 152, 338-350, 1991. Veverka V., Sohnel, O., Bennema, P. and Garside, J., “Concentration gradients in supersaturated solutions. A thermodynamic analysis,” AIChE Journal, 37, 490-498, 1991. Volmer, M., Kinetic der Phasenbildung, Steinkopf, Lipsig, 1939. Wey, J. S and Terwilliger, J. P. “Design consideration for a multistage cascade crystallizer,” Industrial and Engineering Chemistry Process Design and Development, 15, 467-469, 1976.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊