跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.176) 您好!臺灣時間:2025/09/06 09:25
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:徐永鑫
研究生(外文):Yung-Shin Shy
論文名稱:芝麻粕中lignans及lignanglycosides之分析及抗氧化性探討
論文名稱(外文):Studies on the analysis and antioxidative activities of lignans and lignan glycosides in sesame meal
指導教授:孫璐西孫璐西引用關係
指導教授(外文):Lucy Sun Hwang
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:食品科技研究所
學門:農業科學學門
學類:食品科學類
論文種類:學術論文
論文出版年:2001
畢業學年度:89
語文別:中文
中文關鍵詞:芝麻DPPH自由基炒焙lignan glycosides
相關次數:
  • 被引用被引用:24
  • 點閱點閱:1602
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:3
中文摘要
國內大部分芝麻油乃將芝麻炒焙後以壓榨方式提油,由於炒焙溫度過高,因此炒焙後之芝麻粕呈焦苦味且蛋白質變性嚴重,鮮少有食品加工方面之利用,幾乎皆作為飼料或肥料用。而在芝麻粕中含有獨特之lignans 及lignan glycosides化合物,具有多種生理功效。因此本研究目的在探討芝麻炒焙過程中,芝麻油中lignans 及芝麻粕中lignan glycosides之變化情形及其對抗氧化效果之影響,並探討lignan glycosides粗萃出物經酵素和酸水解後之抗氧化效果變化情形,期能提高芝麻粕之機能性成分含量。
本研究以緬甸黑芝麻為試驗材料,在lignans含量方面,芝麻中sesamin及sesamolin含量分別為2.164及1.380 mg/g seed;在lignan glycosides含量方面,sesaminol triglucoside 及sesaminol diglucoside含量分別為 1.731及 0.084 mg/g seed,而sesaminol monoglucoside則偵測不出。
本研究在160-240℃之炒焙溫度範圍內,進行不同炒焙時間之探討,共20組炒焙條件,並以未炒焙者作為對照實驗組。結果顯示,隨著炒焙溫度與時間之增加,芝麻油sesamin含量並無明顯變化;sesamolin含量則由未炒焙之2.04 mg/g oil,下降至240℃、20分鐘炒焙者之0.14 mg/g oil,下降率約為93.14%;sesamol含量則隨著炒焙溫度與時間之增加,而有逐漸增加之趨勢。隨著炒焙溫度與時間之增加,芝麻油氧化安定性也隨之增加,此抗氧化效果之增加,可能與sesamol含量及褐變產物之增加有關。不同炒焙芝麻條件之芝麻粕lignan glycosides粗萃出物DPPH自由基清除能力及LDL抗氧化能力,皆以未炒焙者為最差,隨著炒焙溫度與時間之增加,DPPH自由基清除能力及LDL抗氧化能力也愈高,此抗氧化效果之增加,可能與總酚類化合物含量及褐變產物有關。
在未炒焙芝麻粕lignan glycosides粗萃出物中,sesaminol triglucoside 及sesaminol diglucoside在DPPH自由基清除能力及LDL抗氧化能力上,抗氧化效果極差;而由ODS管柱層析第二區分物所得之褐色物質卻有極佳之抗氧化效果。未炒焙芝麻粕lignan glycosides粗萃出物中抗氧化效果來源初步判定為其中之褐色物質。
將10 mg未炒焙芝麻粕lignan glycosides粗萃出物以7 mg cellulase及6 mg b-glucosidase於50℃下進行酵素水解48小時,水解後之粗萃出物有較佳之DPPH自由基清除效果。在水解物用量為100 mg/ml濃度時,其清除效果較未水解前增加2.12倍。另一方面,以0~2N HCl進行酸水解試驗,在0.5N HCl水解30分鐘時,具有最佳之DPPH自由基清除效果,在水解物用量為100 ug/ml時,其清除效果較未水解前增加1.55倍。無論酵素性水解或鹽酸水解,其抗氧化效果之增加,可能皆為水解後產生sesaminol之故。
Abstract
Most of the sesame oil is produced by roasting and pressing of the sesame seeds. After high temperature of roasting, the sesame meal is bitter tasted and the protein was highly denatured. Therefore, the sesame meal is generally used as feeds or fertilizers. However, lignans and lignan glycosides of sesame meal are found to have several functional effects. The purpose of this project was to study (1) the change of the contents of lignans and lignan glycosides versus the ingluence of the antioxidative activity during the roasting process (2) the antioxidative activity of the unroasted defatted sesame meal, aiming at finding the components responsible for its antioxidative activity (3) the effect of enzymatic and acid hydrolysis on the antioxidative activity of lignan glycosides crude extract of unroasted sesame meal. We hope that we can increase the amount of functional components and enhance the utilization of sesame meal.
Burma black sesame was used as the experimental material in this study. In sesame lignans, the contents of sesamin and sesamolin were 2.164 and 1.380 mg/g seed, respectively; in sesame lignan glycosides, the contents of sesaminol triglucoside and sesaminol diglucoside were 1.731 and 0.084 mg/g seed, respectively. Sesaminol monoglucoside was not detected in sesame seeds.
Increasing the roasting temperature from 160℃ to 240℃, the content of sesamin didn’t change significantly. The content of sesamolin was decreased from 7.04 mg/g oil (unroasted) to 0.14 mg/g oil (roasted at 240℃ fro 20min), with a decreasing rate of 93.145. Meanwhile, the content of sesamol was significantly increased. The oxidative stability of sesame oil was also significantly increased while the roasting temperature was increasing. It might be due to the increasing of sesamol and maillard reaction products.
With regard to the DPPH free radical scavenging effect and Cu+2-induced oxidation of human LDL assay, the unroasted crude extract of lignan glycosides had the poorest antioxidative activity. Under the roasting temperature from 160℃ to 240℃, the antioxidative activity were increased with increasing temperature. The increment of the antioxidative activity of crude extract of lignan glycosides was probably due to the total phenolics contents and maillard reaction products formed during the roasting process.
The most abundant lignan glycosides of Burma black sesame were sesaminol triglucoside and sesaminol diglucoside. Neither sesaminol triglucoside nor sesaminol diglucoside showed good antioxidative activity toward DPPH free radical scavenging effect and inhibition of LDL oxidation. In this study, we found that the brown materials isolated from Fr2 showed excellent DPPH free radical scavenging effect and also had pronounced inhibitory effect toward the oxidation of human LDL. It was suggested that the brown materials plays a prominent role in the antioxidative activity of the lignan glycosides crude extract. Identification of the responsible components is underway.
10 mg of lignan glycosides crude extract (from unroasted sesame meal) was hydrolyzed with 7 mg of cellulase and 6 mg of β-glucosidase at 50℃ for 48 hour. The hydrolysates showed a better DPPH free radical scavenging effect. At the concentration of 100 μg/mL, the scavenging effect was 2.12 fold higher than that of the unhydrolyzed one. In the case of acid hydrolysis with HCl aqueous solution from 0 to 2N, we found that when the lignan glycosides crude extract was hydrolyzed with 0.5N HCl for 30 min, the hydrolysates showed the best DPPH free radical scavenging effect. The scavenging effect was 1.55 fold higher than that of the unhydrolyzed one when the concentration of hydrolysates was 100μg/mL. The possible might be due to the formation of sesaminol during the hydrolysis process.
封面
中文摘要
壹、前言
貳、文獻整理
一、芝麻簡介
1.植物形態
2.芝麻栽培
3.芝麻品種
二、芝麻組成份及物化特性
1.油脂
(1)芝麻油一般特性
(2)芝麻油脂肪酸及不皂化物
(3)芝麻油香氣成分
(4)芝麻油氧化安定性
2.蛋白質
3.碳水化合物
4.維生素及礦物質
5.Lignans
6.Lignan glycosides
三、Lignans及lignan glycosides 之化學變化
1.Lignans 化學變化
2.Lignan glycosides化學變化
四、芝麻油制程及品質變化
1.芝麻油制程
2.芝麻油制程中之品質變化
五、芝麻在食品上的應用
六、氧化原理及抗氧化機制
1.活性氧與自由基
(1)活性氧對人體健康之影響
(2)自由基對人體健康之影響
2.氧化作用機制
(1)自氧化作用
(2)熱氧化作用
(3)光感應氧化作用
(4)酵素性氧化作用
3.抗氧化作用機制
(1)自由基終止劑
(2)還原劑或氧清除劑
(3)金屬螯合劑
(4)單重態氧抑制劑
七、低密度脂蛋白之氧化及與動脈粥狀硬化之關係''
1.LDL特性
2.LDL之氧化
3.LDL與動脈粥狀硬化之關係
八、芝麻之生理機能
1.抗氧化活性
(1)Lignans抗氧化活性
(2)Lignan glyxosides抗氧化活性
(3)其他多酚類化合物抗氧化活性
2.提升體內tocopherol含量
3.降低膽固醇
4.防止高血壓
5.預防癌症
6.促進酒精之代謝及增強肝功能
7.調節脂肪酸之代謝
九、研究目的與實驗流程
一、研究目的
二、實驗流程
1.芝麻油、sesamin及sesamolin鋞加熱處理及酸性白土處理後之lignans變化
2.芝麻炒焙過程中,芝麻油lignans及芝麻粨lignan glycosides之變化抗氧化性探討
3.Lignan glycosides 之區分及抗氧化性探討
4.芝麻粨lignan glycosides粗萃出物酵素水解及酸水解之探討
肆、材料與方法
一、實驗材料
二、藥品
(一)標準品
(二)試劑
(三)溶劑
三、儀器設備
四、實驗方法
伍、結果與討論
一、黑芝麻一般組成分、lignans 及lignan glycosides 分析
1.黑芝麻一般組成分
2.不同品種黑芝麻之lignans含量分析
3.不同品種黑芝麻lignan glycosides之含量及分析
二、芝麻油、sesamin及sesamolin鋞加熱處理及酸性白土處理後之化學變化
1.芝麻油、sesamin及sesamolin鋞加熱處理及後之化學變化
2.芝麻油、sesamin及sesamolin鋞酸性白土處理後之化學變化
三、芝麻炒焙過程中,芝麻油lignans之變化及其抗氧化性探討
1.不同炒焙芝麻條件對芝麻油lignans含量之影響
2.不同炒焙芝麻條件對芝麻油褐變程度之影響
3.不同炒焙芝麻條件對芝麻油r-tocopjherol含量之影響
4.不同炒焙芝麻條件對芝麻油抗氧化性之影響
5.不同炒焙芝麻條件對芝麻油風味強度及接受性之影響
四、芝麻炒焙過程中,芝麻粨lignan glycosides之變化及其抗氧化性探討
1.不同炒焙芝麻條件對芝麻粨lignan glycosides粗萃出物組成份之影響
2.不同炒焙芝麻條件芝麻粨褐變程度之影響
3.不同炒焙溫度條件對芝麻粨lignan glycosides粗萃出物總酚累化合物之影響
4.不同炒焙芝麻條件對芝麻粨lignan glycosides粗萃出物DPPH自由基清除效果之影響
5.不同炒焙芝麻條件對芝麻粨lignan glycosides粗萃出物之FeCl2/H2O2催化linoleic acid脂質過氧化反應抑制效果之影響
6.不同炒焙芝麻條件對芝麻粨lignan glycosides粗萃出物LDL抗氧化性之影響
五、芝麻粨lignan glycosides粗萃出物之區分及抗氧化性探討
1.未炒焙芝麻粨lignan glycosides粗萃出物之區分
2.各區分物及lignans、lignan gllycosides純化物之DPPH自由基清除效果之測定
3.芝麻粨lignan glycosides 粗萃出物之ODS管拄層析區分物Fr2之高效能液層析分析及其各組成分抗氧化性之探討
4.褐色物質
5.炒焙及未炒焙芝麻粨lignan glycosides粗萃之各區分物抗氧化性比較
六、芝麻粨lignan glycosides粗萃出物以酵素水解及酸水解處理之變化及其對抗氧化性之影響
1.酵素水解處理
(1)Lignan glycosides粗萃出物之酵素水解
(2)Sesaminol triglucosied及sesaminol diglucoside純化物之酵素水解
2.酸水解處理
(1)Lignan glycoside粗萃出物之酸水解
(2)Sesaminol triglucosied及sesaminol diglucoside純化物之酵素水解
陸、結論
柒、參考文獻
捌、附錄
柒、參考文獻:
許鴻源,陳玉盤,許順吉,許照信,陳建志,張憲昌。1985。簡明藥材學。新民出版社。
游添榮,楊藹華,鄭安秀,陳昇寬。1999。胡麻栽培技術。台南
區農業改良場技術專刊。1-6。
楊永本。1986。芝麻之加工與利用。食品工業。18(10):45-46。
劉祥文。1987。彩色本草備要。立得出版社。
顏國欽和徐錫樑。1992。麻油加工過程色澤形成原因之探討。食品科學。19(1):25-34。
顏國欽,徐錫樑,林子清。1986。麻油加工技術改進之研究。一、最適當加工條件之探討。食品科學。13(3):198-217。
錢明賽。1998。蔬果中之抗氧化物質。食品工業月刊。 30(8): 21-34。
小泉幸道,福田靖子,並木滿夫。1996。ゴマ種子焙煎條件が油 の酸化安定性に及ぼす影響。1996。Nippon Shokuhin Kagaku Kaishi。43:689-694。
大澤俊彥。1998。酸化ストレスの予防と食品因子。食品工業。 30:18-25。
大澤俊彥。1996。 ゴマ種子に含まれる配醣體の研究。食の科 學。26-32。
大澤俊彥。1993。新規な抗酸化物質の抽出と應用展開。Bio. Industry。141-148。
山下かなへ。1996。 ゴマの老化抑制效果。食の科學。33-38。
井上良計。1997。 ゴマ 抽出’ セサミン ’の食品への利用。 New Food Industry。39(11):33-38。
村上哲男,吉西肇,伊藤浩行。1995。腦卒中易發症性高血壓自 然發症ラットの虛血性腦障害に對するセサミンの予防效 果。日本營養食糧學會誌。48(3):189-193。
並木滿夫。1996。ゴマの機能性研究の新展開。食の科學。18-25。
長島万弓,福田靖子,井藤龍平。1999。黑ゴマ種子水洗廢液に含まれる抗氧化性リグナン。46:382-388. Nippon Shokuhin Kagaku Kogaku Kaishi。46:382-388。
秋元健吾,清水昌。1996。ゴマ成分セサミンの多樣な生理活性。 New Food Industry。38(2):62-70。
秋元健吾,清水昌。1997。ゴマ成份セサミンの生理活性─ アルコ-ル代謝と生體內抗酸化中心として─。New Food Industry。39(3):25-31。
栗山健一,土屋欣也,無類井建夫。1993。高速液體クロマトグ ラフィーによるゴマ種子リグナン配糖體の分析。Nippon Nogeikagaku Kaishi。67:1693-1700。
栗山健一,土屋欣也,無類井建夫。1995。ゴマ發芽に伴う新規 リグナン配糖體の生成。Nippon Nogeikagaku Kaishi。69: 685-693。
栗山健一,無類井建夫。1993。セルラーゼ共存下におけるゴマ 種子リグナン配糖體のβーグルコシダーゼによる加水分 解。Nippon Nogeikagaku Kaishi。69:1701-1705。
栗山健一,無類井建夫。1995。ゴマリグナン配糖體のヒドロキ シラジカル消去活性。Nippon Nogeikagaku Kaishi。69: 703-705。
栗山健一,無類井建夫。1996。ゴマリグナン配糖體の脂質過酸 化抑制效果。Nippon Nogeikagaku Kaishi。70:161-167。
菅野道廣。1996。ゴマリグナンの肝機能增強作用。食の科學。 39-43。
楊志博,取訪芳秀,平井孝一,豐田佳子,淺見純生,田中隆治。 1995。エタノ-ルの筋肉弛緩作用に及ばすセサミンの影響。 日本營養食糧學會誌。48(2):103-108。
飯塚佳惠,並木滿夫,山下かなへ。1996。ゴマリグナン物質のラット生體內a-トコフロ-ル濃度增強效果に對するリグナンの種類およびトコフロ-ル濃度の影響。日本營養食糧學會誌。 49(3):149-155。
福田靖子。1990。ゴマ種子の抗酸化成分に關する食品化學的研究。Nippon Shokuhin Kogyo Gakkaishi。37:484-492。
福田靖子。1996a。ゴマ油の機能性成分。食品の開發。32(6): 11-13。
福田靖子。1996b。ゴマ油の酸化安定性と風味。食の科學。32- 39。
福田靖子。1996c。新しいゴマの利用。食の科學。70-73。
福田靖子,小泉幸道,井藤龍平,並木滿夫。1996。焙煎ゴマ油 の抗酸化成分の相乘作用。Nippon Shokuhin Kagaku Kogaku Kaishi。43:1272-1277。
福田靖子,大澤俊彥,川岸舜朗,並木滿夫。1988。國產ゴマ品 種間のセサモリンおよびリグナン抗酸化性物質の比較。 Nippon Shokuhin Kogyo Gakkaishi。35:483-486。
福田靖子,大澤俊彥,川岸舜朗,並木滿夫。1991。黑ゴマ種子 の抗酸化について。Nippon Shokuhin Kogyo Gakkaishi。 38:915-919。
福田靖子,大澤俊彥,並木滿夫。1981。ゴマの抗酸化性について。Nippon Shokuhin Kogyo Gakkaishi。28:461-464。
福田靖子,大澤俊彥,並木滿夫。1985。ゴマの發芽にともなう 抗酸化性の增大について。Nippon Shokuhin Kogyo Gakkaishi。32:407-412。
福田靖子,中田德美。1999。スライスアーモンド種子の焙煎溫度が抗酸化性に及ぼす影響。Nippon Shokuhin Kogyo Gakkaishi。46:786-791。
福田靖子,並木滿夫。1988。ゴマの食品科學。 Nippon Shokuhin Kogyo Gakkaishi。35:552-562。
福島朱美,無類井建夫。1993。ごま油沈澱物の成分。油化學。 42:519-522。
Abou-Gharbia, H. A., Shahidi, F., Adel, A., Shehata, Y. and Youssef, M. M. 1997. Effects of processing on oxidative stability of sesame oil extracted from intact and dehulled seeds. JAOCS. 74:215-221.
Antony, S. M., Han, I. Y., Rieck, J. R. and Dawson, P. L.2000. Antioxidative effect of maillard reaction products formed from honey at different reaction times. J. Agric. Food Chem. 48:3985-3989.
AOAC(1984) Official Method of Analysis. 14th ed. Association of Official Analytical Chemists. Washington, DC.
Blois, M. S. 1958. Antioxidant determination by the use of a stable free radical. Nature 181:1199-1200.
Bonorden, W.R. and Pariza, M. W. 1994. Antioxidant nutrients and protection from free radicals. In: Kotsonis, F. N., Mackey, M. and Hjelle, J. Eds. Nutritional Toxicology. New York: Raven.19-48.
Brito, O. J. and Nunez, N. 1982. Evaluation of sesame flour as a complementary protein source for combinations with soy and corn flours. J. of Food Sci. 457-460.
Carpenter, A. P. 1979. Determination of tocopherols in vegetable oils. JAOCS. 56: 668-671.
Cook, N. C. and Sammam, S. 1996. Flavanoids- Chemistry, metabolism, cardioprotective effects, and dietary sources. J. Nutr. Biochem. 7: 66-76.
Diaz, M. N., Frei, B., Vita, J.A. and Keaney, J. F. 1997. Antioxidant and atherosclerotic heart disease. N. Engl. J. Med. 337:408-416.
Farmer, E. H., Bloomfield, G. E., Sundralingam, A. and Sutton, D. 1942. The course and mechanism of autoxidation reactions in olefinic and polyolefinic substances including rubber. Trans Faraday Soc. 38:348-356.
Fujiyama, Y., Umeda, R. and Igarashi, O. 1992. Effects of sesamin and curcumin on D5-desaturation and chain elongation of polyunsaturated fatty acid metabolism in primary cultured rat hepatocytes. J. Nutri. Sci. Vitaminol 353-363.
Fukuda, Y., Osawa, T., Namiki, M. And Ozaki, T. 1985. Studies on antioxidative substances in sesame seed. Agric. Biol. Chem. 49:301-306.
Fukuda, Y., Nagata, M., Osawa, T. and Namiki, M. 1986a. Chemical aspects of the antioxidative activity of roasted sesame seed oil and the effect of using the oil for frying. Agric. Biol. Chem. 50:857-862.
Fukuda, Y., Nagata, M., Osawa, T. and Namiki, M. 1986b. Contribution of lignan analoges to antioxidative activity of refined unroasted sesame seed oil. JAOCS. 63: 1027-1031.
Halliwell, B. 1995.Oxidation of low-density lipoprotein: questions of initiation, propagation, and the effect of antioxidants. Am. J. Clin. Nutr. 61(suppl.):670S-677S.
Halliwell, B. and Gutteridge, J. M. C. 1990. Role of free radicals and catalytic metal irons in human disease: a overview. Method Enzymol. 186:59-85.
Halliwell, B., Gutteridge, J. M. C. and Cross, C. C. 1992. Free radicals, antioxidants, and human disease: where are we now? I. Lab. Clin. Med. 119:598-620.
Hasegawa, K., Murata, M. and Fujino, S. 1978. Characterization of subunits and temperature-dependent dissociation of 13S globulin of sesame seed. Agric. Biol. Chem. 42:2291-2297.
Hill, D. L. and Grubbs, C. J. 1992. Retinoids and cancer prevention. Ann. Rev. Nutr. 12:161-181.
Hirata, F., Fujita, K., Ishikura, Y., Hosoda, K., Ishikawa, T. and Nakamura, H. 1996. Hypocholesterolemic effect of sesame lignan in humans. Acerosclerosis 122:135-136.
Hirose, N., Doi, F., Ueki, T., Akazawa, K., Chijjiwa, K., Sugano, M., Akimoto, K., Shimizu, S. and Yamada, H. 1992. Suppressive effect of sesamin against 7,12-dimethylbenz[a] -anthracene induced rat mammary carcinogenesis. Anticancer Research 1259-1266.
Hirose, N., Inoue. T., Nishihara, K., Sugano, M., Akimoto,K., Shimizu, S. and Yamada, H. 1991.Inhibition of cholesterol absorption and synthesis in rats by sesamin. Journal of Lipid Research 32:629-638.
Julkunen-Titto, R. 1985. Phenolic constituents in the leaves of northern willows : methods for the analysis of certain phenolics. J. Agric. Food Chem. 33:213-217.
Kamal-Eldin, A. and Appelqvist, L. A. 1994. Variation in fatty acid composition of the different acyl lipids in seed oils from four sesamum species. JAOCS. 71:135-139.
Kamal-Eldin, A. and Appelqvist, L. A. 1996. The chemistry and antioxidant properties of tocopherols and tocotrienols. Lipid 31:671-701.
Kamal-Eldin, A., Pettersson, D. and Appelqvist, L. A. 1995. Sesamin ( a compound from sesame oil) increases tocopherol levels in rats fed ad libitum. Lipids. 30:499-505.
Kang, M. H., Katsuzaki, H. and Osawa, T. 1998a. Inhibition of 2,2’- Azobis(2,4-dimethyl valeronitrile)- induced lipid peroxidation by sesaminols. Lipid. 33: 1031-1036.
Kang, M. H., Naito, M., Tsujihara, N. and Osawa, T. 1998b. Sesamolin inhibits lipid peroxidation in rat liver and kinney. J. Nutr. 128: 1018-1022.
Kang, M. H., Naito, M., Sakai, K., Uchida, K. and Osawa, T. 2000. Mode of action of sesame lignans in protecting low-density lipoprotein against oxidative damage in vitro. Life Sciences 66:161-171.
Kang, M. H., Kawai, Y., Naito, M. and Osawa, T. 1999. Dietary defatted sesame flour decrease susceptibility to oxidative stress in hypercholesterolemic rabbits. J. Nutr. 129:1885-1890.
Kato, M. J., Laurence, A. C., Davin, B. and Lewis, N. G. 1998. Biosynthesis of antioxidant lignans in Sesamum indicum seeds. Phytochemistry 47: 583-591.
Katsuzaki, H., Kawakishi, S. and Osawa, T. 1994. Sesaminol glucosides in sesame seeds. Phytochemistry 35:773-776.
Kikugawa, K., Arai, M. and Kurechi, T. 1983. Participation of sesamol in stability of sesame oil. JAOCS. 1528-1533.
Kita, S., Matsumura, Y., Morimoto, S., Akimoto, K., Furuya, M., Oka, N. and Tanaka, T. 1995. Antihypertensive effect of sesamin. II. Protection against two-kidney, one-clip renal hypertension and cardiovascular hypertrophy. Biol. Pharm. Bull. 18:1283-1285.
Knight, J. A. 1997. Reactive oxygen species and the neurodegenerative disorders. Ann. Clin. Lab. Sci. 27:11-25.
Mistry, B. S. and Min, D. B. 1992. Oxidized flavor compounds in edible oils. In “Off-Flavors in Foods and Beverages”, Charalambous, G. (Ed.) pp 171-209. Elsevier, Amsterdam, the Netherlands.
Mohamed, H. M. A. and Awatif, I. I. 1998. The use of sesame oil unsaponifiable matter as a natural antioxidant. Food Chemistry 269-276.
Nagata, M., Osawa, T., Namiki, M., Fukuda, F. and Ozaki, T. 1987. Stereochemical structures of antioxidative bisepoxylignans, sesaminol and its isomers, transformed from sesamolin. Agric. Biol.Chem. 51:1285-1289.
Nakamura, S., Nishimura, O., Masuda, H. and Mihara, S. 1989. Identification of volatile flavor components of the oil from roasted sesame seeds. Agric. Biol. Chem. 53:1891-1899.
Namiki, M. 1995. The chemistry and physiological functions of sesame. Food Reviews International 11:281-329.
Nishimura, N., Okubo, K. and Shibasaki, K. 1979. Chemical and physical properties of 13S globulin, the major protein in sesame seeds. Cereal Chem. 56:239-242.
Okubo,K., Nishimura, N. and Shibasaki, K. 1979a. Composition of sesame seed protein components and purification of the main globulin. Cereal Chem. 56:100-104.
Okubo, K., Nishimura, N. and Shibasaki, K. 1979b. Separation of the 13S globulin in sesame seeds into two groups of acidic and basic subunits, and their physicochemical properties. Cereal Chem. 56:317-320.
Palombo, R., Gertler, A. and Saguy, I. 1984. A simplified method for determination of browning in dairy powders. J. Food Sci. 49:1609-1610.
Puhl, H., Wang, G. and Esterbauer, H. 1994. Methods to determine oxidation of low-density lipoproteins. Methods in Enzymology. 233:425-441.
Ramarathnam, N., Osawa, T., Ochi, H. and Kawakishi, S. 1995. The contribution of plant food antioxidants to human health. Trends in Food Science and Technology 6: 75-82.
Regenström, J., Nilsson, J., Tornvall, P., Landou, C. and Hamsten, A. 1992. Susceptibility to low-density lipoprotein oxidation and coronary atherosclerosis in man. Lancet. 339: 183-186.
Rice-Evan, C. A., Miller, M. J. and Paganga, G. 1997. Antioxidant properties of phenolic compounds. Trends in Plant Science 2: 152 - 159.
Richmond, W. 1973. Preparation and properties of a cholesterol oxidase from Nocardia sp. And it’s application to the enzymatic assay of total cholesterol in serum. Cline. Chem. 19:1350-1356.
Ryu, S. N., Chi-Tang, H. and Osawa, T. 1998. High performance liquid chromatographic of antioxidant lignan glycosides in some varieties of sesame. Journal of Lipid 5:17-28.
Satchithanandam, S., Reicks, M., Calvert, J. C., Cassidy, M. M. and Kritchevsky, D. 1993. Coconut oil and sesame oil affect lymphatic absorption of cholesterol and fatty acids in rats. Nutr. 123:1852-1858.
Shahidi, F., Amarowicz, R., Abou-Gharbia, H. A. and Shehata, A. Y. 1997. Endogeneous antioxidants and stability of sesame oil as affected by processing and storage. JAOCS. 74:143-148.
Shimizu, S., Akimoto, K., Shinmen, Y., Kawashima, H., Sugano, M. and Yamada, H. 1991. Sesamin is a potent and specific inhibitor of D5 desaturase in polyunsaturated fatty acid biosynthesis. Lipids 26:512-516.
Sugano, M., Inoue, T., Koba, K., Yoshida, K., Hirose, N., Shinmen, Y., Akimoto, K. and Amachi, T. 1990. Influence of sesame lignans on various lipid parameters in rats. Agric. Biol. Chem. 54:2669-2673.
Tashiro, T., Fukuda, Y., Osawa, T. and Namiki, M. 1990. Oil and minor components of sesame(Sesamum indicum L.)strains. JAOCS. 67:508-511.
Westhuyzen, J. 1997. The oxidation hypothesis of atherosclerosis: an update. Ann. Clin. Lab. Sci. 27:1-10.
Yamashita, K., Nohara, Y., Katayama, K. and Namiki, M. 1992. Sesame seed lignans and g-tocopherol act synergistically to produce vitamin E activity in rats. J. Nutr. 122:2440-2446.
Yamashita, K., Lizuka, Y., Imai, T. and Namiki, M. 1995. Sesame seed and its lignans produce marked enhancement of vitamin E activity in rats fed a low a-tocopherol diet. Lipids 30: 1019 — 1028.
Yasumoto, S. S., Katsuta, M., Okuyama, Y., Takahashi, Y. and Ide, T. 2001. Effect of sesame seeds rich in sesamin and sesamolin on fatty acid oxidation in rat liver. J. Agric. Food Chem. 49:2647-2651.
Yen, G. C. 1990. Influence of seed roasting process on the changes in composition and quality of sesame( Sesame indicum) oil. J. Sci. Food Agric. 563-570.
Yoshida, H. and Kajimoto, G. 1994. Microwave heating affects composition and oxidative stability of sesame (Sesamum indicum) oil. J. Food Sci. 59:613-625.
Yoshida, H. and Takagi, S. 1999. Antioxidative effects of sesamol and tocopherols at various concentrations in oils during microwave heating. J. Sci. Food Agric. 79: 220:226.
Yoshida, H., Hirakawa, Y. and Takagi, S. 2000. Roasting influences on molescular species of triacylglycerols in sesame seeds( Sesamum indicum). J. Sci. Food Agric. 80:1495-4502.
Yoshida, H., Shigezaki, J., Takagi, S. and Kajimoto, G. 1995. Variations in the composition of various acyl lipids, tocopherols and lignans in sesame seed oils roasted in a microwave oven. J. Sci. Food Agric. 68:407-415.
Yuno, N., Matoba, T., Hirose, M. and Hasegawa, K. 1986. Subunit structure of sesame 13S globulin. Agric. Biol. Chem. 50: 983-988.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top