[1]http://zh.wikipedia.org/。
[2]Takezawa, N., Iwasa, N., “Steam reforming and dehydrogenation of methanol: Difference in the catalytic functions of copper and group VIII metals,” Catalysis Today, Vol. 36, pp. 45-56, 1997.
[3]Wiese, W., Emonts, B., Peters, R., “Methanol steam reforming in a fuel cell drive system,” Journal of Power Sources, Vol. 84, pp. 187-193, 1999.
[4]Velu, S., Suzuki, K., Okazaki, M., Kapoor, M. P., Osaki, T., and Ohashi, F., “Oxidative Steam Reforming of Methanol over CuZnAl(Zr)-Oxide Catalysts for the Selective Production of Hydrogen for Fuel Cells Catalyst Characterization and Performance Evaluation,” Journal of Catalysis, Vol. 194, pp. 373-384, 2000.
[5]Ni, M., Leung, D. Y. C., Leung, M. K. H., “A review on reforming bio-ethanol for hydrogen production,” International Journal of Hydrogen Energy, Vol. 32, pp. 3238-3247, 2007.
[6]Liguras, D. K., Kondarides, D. I., Verykios, X. E., “ Production of hydrogen for fuel cells by steam reforming of ethanol over supported noble metal catalysts,” Applied Catalysis B: Environmental, Vol. 43, pp. 345–354, 2003.
[7]Frusteri, F., Freni, S., Spadaro, L., Chiodo, V., Bonura, G., Donato, S., Cavallaro, S., “ H2 production for MC fuel cell by steam reforming of ethanol over MgO supported Pd, Rh, Ni and Co catalysts,” Catalysis Communications , Vol. 5, pp. 611–615, 2004.
[8]Akande, A. J., Idem, R. O., Dalai, A. K., “Synthesis, characterization and performance evaluation Ni/Al2O3 catalysts for reforming of crude ethanol for hydrogen production,” Applied. Catalysis. A: General, Vol. 287, pp. 159–75, 2005.
[9]Liorca, J., Homs, N., Piscina, P. R., “ In situ DRIFT-mass spectrometry study of the ethanol steam-reforming reaction over carbonyl-derived Co/ZnO catalysts,” Journal of Catalysis, Vol. 227, pp.556-560, 2004.
[10]Llorca, J., Piscina, P. R., Dalmon, J. A., Sales, J., Homs, N., “CO-free hydrogen from steam reforming of bioethanol over ZnO-supported cobalt catalysts:effect of the metallic precursor,” Applied. Catalysis. B: Environmental, Vol.43, pp.355–369, 2003.
[11]Llorca, J., Homs, N., Sales, J., Fierro, J. L. G., Piscina, P. R., “Effect of sodium addition on the performance of Co–ZnO-based catalysts for hydrogen production from bioethanol,” Journal of Catalysis, Vol. 222, pp. 470–480, 2004.
[12]Homs, N., Llorca, J., Piscina, P. R., “Low-temperature steam-reforming of ethanol over ZnO-supported Ni and Cu catalysts The effect of nickel and copper addition to ZnO-supported cobalt-based catalysts,” Catalysis Today, Vol. 116, pp. 361-366, 2006.
[13]Vizcaino, A. J., Carrero, A., Calles, J. A., “Hydrogen production by ethanol steam reforming over Cu–Ni supported catalysts,” International Journal of Hydrogen Energy, Vol. 32 , pp. 1450 – 1461, 2007.
[14]Alberton, A. L., Souza, M. M. V. M., Schmal, M., “Carbon formation and its influence on ethanol steam reforming over Ni/Al2O3 catalysts,” Catalysis Today, Vol. 123 , pp. 257 – 264, 2007.
[15]Liberatori, J. W. C., Ribeiro, R. U., Zanchet, D., Noronha, F. B., Bueno, J. M. C., “ Steam reforming of ethanol on supported nickel catalysts,” Applied. Catalysis. A: General, Vol.327, pp.197 – 204, 2007.
[16] Denis, A., Grzegorczyk, W., Gac, W., Machocki, A., “Steam reforming of ethanol over Ni/support catalysts for generation of hydrogen for fuel cell applications,” Catalysis Today., Vol. 137, pp. 453 – 459, 2008.
[17]Wang, F., Li, Y., Cai, W., Zhan, E., Mu, X., Shen, W., “Ethanol steam reforming over Ni and Ni–Cu catalysts,” Catalysis Today, 2009.
[18]Fatsikostas, A. N., Kondarides, D. I., Verykios, X. E., “ Production of hydrogen for fuel cells by reformation of biomass-derived ethanol,” Catalysis Today, Vol. 75, pp. 145-155, 2002.
[19]Fatsikostas, A. N., Verykios, X. E., “Reaction network of steam reforming of ethanol over Ni-based catalysts,” Journal of Catalysis, Vol. 225, pp. 439-452, 2004.
[20]Vaidya, P. D., Rodrigues, A. E., “Insight into steam reforming of ethanol to produce hydrogen for fuel cells,” Chemical Engineering Journal, Vol. 117, pp. 39-49, 2006.
[21]Sun, G.B., Hidajat, K., Wu, X.S., Kawi, S., “A crucial role of surface oxygen mobility on nanocrystalline Y2O3 support for oxidative steam reforming of ethanol to hydrogen over Ni/Y2O3 catalysts,” Applied Catalysis B: Environmental, Vol. 81, pp. 303-312, 2008.
[22]Zhou, B., Liu, B., Jiang, L. P., Zhu, J. J., “Ultrasonic-assisted size-controllable synthesis of Bi2Te3 nanoflakes withelectrogenerated chemiluminescence,” Ultrasonics Sonochemistry, Vol. 14, pp. 229–234, 2007.
[23]Zhou, L., Wang, W., Zhang, L., “Ultrasonic-assisted synthesis of visible-light-induced Bi2MO6 (M =W, Mo) photocatalysts,” Journal of Molecular Catalysis A: Chemical, Vol. 268, pp. 195-200, 2007.
[24]Neppolian, B., Wang, Q., Jung, H., Choi, H., “Ultrasonic-assisted sol-gel method of preparation of TiO2 nano-particles: Characterization, properties and 4-chlorophenol removal application,” Ultrasonics Sonochemistry, Vol. 15, pp. 649-658, 2008.
[25]Nishida, I., “Precipitation of calcium carbonate by ultrasonic irradiation,” Ultrasonics Sonochemistry, Vol. 11, pp. 423-428, 2004.
[26]Neumann, A. Walter, D., “The thermal transformation from lanthanum hydroxideto lanthanum hydroxide oxideirradiation,” Thermochimica Acta, Vol. 445, pp. 200-204, 2006.
[27]Mazloumi, M., Shahcheraghi, N., Kajbafvala, A., Zanganeh, S., Lak, A .,Mohajerani, M.S., Sadrnezhaad, S.K., “3D bundles of self-assembled lanthanum hydroxide nanorods via a rapidmicrowave-assisted route,” Journal of Alloys and Compounds, Vol. 473, pp. 283-287, 2009.
[28]Ozawa, M., Onoe, R., Kato, H., “Formation and decomposition of some rare earth (RE = La, Ce, Pr) hydroxides and oxides by homogeneous precipitation,” Journal of Alloys and Compounds, Vol. 408, pp. 556-559, 2006.
[29]Djerdj, I., Garnweitner, G., Su, D. S., Niederberger, M., “Morphology-controlled nonaqueous synthesis of anisotropiclanthanum hydroxide nanoparticles,” Journal of Solid State Chemistry, Vol. 180, pp. 2154-2165, 2007.
[30]Ruckenstein, E., Hu, Y. H., “Interactions between Ni and La2O3 in Ni/La2O3 Catalysts Prepared Using Different Ni Precursors,” Journal of Catalysis, Vol. 161, pp. 55-61, 1996.
[31]Choudhary, V. R., Uphade, B. S., Belhekar, A. A., “Oxidative Conversion of Methane to Syngas over LaNiO3 Perovskite with or without Simultaneous Steam and CO2 Reforming Reactions: Influence of Partial Substitution of La and Ni,” Journal of Catalysis, Vol. 163, pp. 312-318, 2006.
[32]Guo, J., Lou, H., Zhu, Y Zheng, X., “La-based perovskite precursors preparation and its catalyticactivity for CO2 reforming of CH4,” Materials Letters, Vol. 57, pp. 4450-4455, 2003.
[33]Batiot-Dupeyrat, C., Valderrama, G., Meneses, A., Martinez, F., Barrault, J., Tatibouët, J.M., “Pulse study of CO2 reforming of methane over LaNiO3,” Applied Catalysis A: General, Vol. 248, pp. 143-151, 2003.
[34]Cai,W., Zhang, B., Li, Y., Xu, Y., Shen, W. j., “Hydrogen production by oxidative steam reformingof ethanol over an Ir/CeO2 catalyst,” Catalysis Communications, Vol. 8, pp. 1588-1594, 2007.
[35]Cai, W., Wang, F., Zhan, E., Van Veen, A. C., Mirodatos, C., Shen, W. j., “Hydrogen production from ethanol over Ir/CeO2 catalysts: A comparative study of steam reforming, partial oxidation and oxidative steam reforming,” Journal of Catalysis, Vol. 257, pp. 96-107, 2008.
[36]Zhang,L., Li, W., Liu, J., Guo, C., Wang, Y., Zhang, J., “Ethanol steam reforming reactions over Al2O3 •SiO2-supported Ni–La catalysts,” Fuel, Vol. 88, pp. 511-518, 2009
[37]李嘉展, “氧化鈷觸媒應用於乙醇蒸氣重組反應之研究” ,碩士論文,國防大學理工學院應用化學研究所,桃園,2007。[38]Fierro, V., Akdim, O., Provendier, H., Mirodatos, C., “Ethanol oxidative steam reforming over Ni-based catalysts,” Journal of Power Sources, Vol. 145, pp. 659-666, 2005.
[39]Gallego, G. S., Mondrago´n, F., Barrault , J., Tatiboue¨t, J. M., Batiot-Dupeyrat, C., “CO2 reforming of CH4 over La–Ni based perovskite precursors ,” Applied Catalysis A: General, Vol. 311, pp. 164-171, 2006.
[40]Idriss, H., Diagne, C., Hindermann , J. P., Kiennemann, A., Barteau, M. A., “Reactions of acetaldehyde on CeO2 and CeO2-supported Catalysts ,” Journal of Catalysis, Vol. 155, pp. 219-237, 1995.
[41]Benito, M., Padilla, R., Serrano-Lotina, A., Rodriguez, L., Brey, J. J., Daza, L., “The role of surface reactions on the active and selective catalyst design for bioethanol steam reforming ,” Journal of Power Sources, Vol. 192, pp. 158-164, 2009.
[42]畢家麟, “支撐性鉑-釕觸媒在乙醇製氫上之研究” ,博士論文,國防大學中正理工學院國防科學研究所,桃園,2007。