跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.59) 您好!臺灣時間:2025/10/15 22:57
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:劉炯岳
研究生(外文):Liu,Jyong-Yue
論文名稱:NiOx-LaOx複合氧化物之乙醇重組活性評估
論文名稱(外文):Steam Reforming Of Ethanol Over Nickel-Lanthanum Composite Oxide
指導教授:汪成斌汪成斌引用關係
指導教授(外文):Wang,Chen-Bin
學位類別:碩士
校院名稱:國防大學理工學院
系所名稱:應用化學碩士班
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:66
中文關鍵詞:乙醇蒸汽重組鎳鑭複合氧化物
外文關鍵詞:Steam reforming of ethanolLaNiOx
相關次數:
  • 被引用被引用:0
  • 點閱點閱:133
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
以超音波(240 W)輔助共沉澱氧化法製備鎳鑭複合氧化物觸媒,並分別煅燒300、 500和700 ℃ 兩小時。並以XRD(X-ray Diffraction)、TPR(Temperature - Programmed Reduction) 、TG、BET及TEM(Transmission Electron Microscope)鑑定觸媒特性結構。進一步探討反應溫度(300-450℃)對乙醇蒸氣重組(SRE)反應活性及產物分佈的影響。經特性鑑定結果指出鎳鑭複合氧化物觸媒經超音波輔助(U-LaNiOx)易生成管狀結構,不經超音波輔助(LaNiOx)主要生成棒狀結構。經高溫煅燒後兩種觸媒都會形成鑭酸鎳(LaNiO3)結構。經SRE(Steam Reforming Ethanol)反應活性比較。結果指出U-LaNiOx觸媒在325 ℃之乙醇轉化趨近100%,而LaNiOx觸媒之反應溫度(TR)則需達425 ℃才能完全轉化,比較氫氣產率(YH2),U-LaNiOx觸媒在350 ℃趨近於5。LaNiOx觸媒在350 ℃只有0.36。結果指出超音波易使鎳鑭前驅物均勻分散,使得鎳鑭形成交互作用力,氧化鑭會均勻分布在鎳上,有效增加反應活性及抗積碳能力,未經超音波使的前驅物分散不夠均勻,鑭鎳交互堆積,影響活性。且鑭並未均勻分布在鎳上,無法有效去除積碳。
A nickel-lanthanum composite oxide, U-LaNiOx, with 1:1 molar ratio was prepared by the co-precipitation-oxidation method (PO) and assisted with ultrasonic irradiation (240 W). The as-prepared sample was further calcined at 300, 500 and 700 ℃ for 2 h (assigned as U-C300, U-C500 and U-C700, respectively). All samples were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), BET and temperature programmed reduction (TPR). Catalytic activities toward the steam reforming of ethanol (SRE) were tested in the temperature (300-450℃) in a self-designed fixed-bed reactor.The results of Characterization test confirmed that the U-LaNiOx has a nanotube structure and LaNiOx has a nanorods structure, We believe that formation of nanotubes can be attributed to the assisted with ultrasonic irradiation. Both as-prepared sample was calcined at 700 ℃ for 2 h that became perovskite structure (LaNiOx).This study focused on the comparison of activated as-prepared sample (U-LaNiOx) with the non-assisted with ultrasonic irradiation (240 W)as-prepared sample (LaNiOx). The results indicated that the ethanol conversion approached complete around 325 ℃ for U-LaNiOx sample while required 425 ℃ for LaNiOx sample to complete conversion. The yield of hydrogen (YH2) arrived 5.0 around 350 ℃ for U-LaNiOx sample.U-LaNiOx catalyst compared with LaNiOx catalyst, U-LaNiOx catalyst was highly active and stable for steam reforming of ethanol. The improvement was attributed to the effective highly dispersed LaOx particles through the strong interaction between LaOx and NiOx.
誌謝 ii
摘要 iii
ABSTRACT iv
目錄 v
表目錄 vii
圖目錄 viii
1. 緒論 1
1.1 前言 1
1.2 氫氣的生產 1
1.3 乙醇蒸氣重組製氫文獻回顧 4
1.4 超音波輔助製備文獻回顧 6
1.5 研究目的與方向 7
2. 實驗 8
2.1 藥品 8
2.2 觸媒製備 8
2.3 實驗儀器 12
2.3.1 X光粉末繞射(XRD, X-ray Powder Diffraction) 12
2.3.2 熱分析(TGA) 13
2.3.3 傅立葉轉換紅外線光譜儀(FT-IR) 13
2.3.4 程溫還原反應(TPR, Temperature Programmed Reduction) 13
2.3.5 穿透式電子顯微鏡(TEM, Transmission Electron Microscope) 16
2.3.6 表面積及孔徑量測(BET) 16
2.4 觸媒的活性測試 17
2.4.1 活性測試裝置 17
2.4.2 活性測試數據計算 21
3. 結果與討論 22
3.1 U-LaNiOx系列觸媒 22
3.1.1 觸媒特性鑑定 22
3.1.2 SRE活性測試 28
3.1.3 SRE壽期測試 36
3.1.4 U-LaNiOx系列觸媒SRE反應後之特性鑑定 37
3.1.5 U-LaNiOx觸媒進行SRE反應之機制 40
3.2 LaNiOx系列觸媒 42
3.2.1 觸媒特性鑑定 42
3.2.2 SRE活性測試 47
3.2.3 SRE反應後觸媒特性鑑定 53
3.2.4 LaNiOx觸媒進行SRE反應之機制 57
4. 結論 59
參考文獻 60
自傳 66
[1]http://zh.wikipedia.org/。
[2]Takezawa, N., Iwasa, N., “Steam reforming and dehydrogenation of methanol: Difference in the catalytic functions of copper and group VIII metals,” Catalysis Today, Vol. 36, pp. 45-56, 1997.
[3]Wiese, W., Emonts, B., Peters, R., “Methanol steam reforming in a fuel cell drive system,” Journal of Power Sources, Vol. 84, pp. 187-193, 1999.
[4]Velu, S., Suzuki, K., Okazaki, M., Kapoor, M. P., Osaki, T., and Ohashi, F., “Oxidative Steam Reforming of Methanol over CuZnAl(Zr)-Oxide Catalysts for the Selective Production of Hydrogen for Fuel Cells Catalyst Characterization and Performance Evaluation,” Journal of Catalysis, Vol. 194, pp. 373-384, 2000.
[5]Ni, M., Leung, D. Y. C., Leung, M. K. H., “A review on reforming bio-ethanol for hydrogen production,” International Journal of Hydrogen Energy, Vol. 32, pp. 3238-3247, 2007.
[6]Liguras, D. K., Kondarides, D. I., Verykios, X. E., “ Production of hydrogen for fuel cells by steam reforming of ethanol over supported noble metal catalysts,” Applied Catalysis B: Environmental, Vol. 43, pp. 345–354, 2003.
[7]Frusteri, F., Freni, S., Spadaro, L., Chiodo, V., Bonura, G., Donato, S., Cavallaro, S., “ H2 production for MC fuel cell by steam reforming of ethanol over MgO supported Pd, Rh, Ni and Co catalysts,” Catalysis Communications , Vol. 5, pp. 611–615, 2004.
[8]Akande, A. J., Idem, R. O., Dalai, A. K., “Synthesis, characterization and performance evaluation Ni/Al2O3 catalysts for reforming of crude ethanol for hydrogen production,” Applied. Catalysis. A: General, Vol. 287, pp. 159–75, 2005.
[9]Liorca, J., Homs, N., Piscina, P. R., “ In situ DRIFT-mass spectrometry study of the ethanol steam-reforming reaction over carbonyl-derived Co/ZnO catalysts,” Journal of Catalysis, Vol. 227, pp.556-560, 2004.
[10]Llorca, J., Piscina, P. R., Dalmon, J. A., Sales, J., Homs, N., “CO-free hydrogen from steam reforming of bioethanol over ZnO-supported cobalt catalysts:effect of the metallic precursor,” Applied. Catalysis. B: Environmental, Vol.43, pp.355–369, 2003.
[11]Llorca, J., Homs, N., Sales, J., Fierro, J. L. G., Piscina, P. R., “Effect of sodium addition on the performance of Co–ZnO-based catalysts for hydrogen production from bioethanol,” Journal of Catalysis, Vol. 222, pp. 470–480, 2004.
[12]Homs, N., Llorca, J., Piscina, P. R., “Low-temperature steam-reforming of ethanol over ZnO-supported Ni and Cu catalysts The effect of nickel and copper addition to ZnO-supported cobalt-based catalysts,” Catalysis Today, Vol. 116, pp. 361-366, 2006.
[13]Vizcaino, A. J., Carrero, A., Calles, J. A., “Hydrogen production by ethanol steam reforming over Cu–Ni supported catalysts,” International Journal of Hydrogen Energy, Vol. 32 , pp. 1450 – 1461, 2007.
[14]Alberton, A. L., Souza, M. M. V. M., Schmal, M., “Carbon formation and its influence on ethanol steam reforming over Ni/Al2O3 catalysts,” Catalysis Today, Vol. 123 , pp. 257 – 264, 2007.
[15]Liberatori, J. W. C., Ribeiro, R. U., Zanchet, D., Noronha, F. B., Bueno, J. M. C., “ Steam reforming of ethanol on supported nickel catalysts,” Applied. Catalysis. A: General, Vol.327, pp.197 – 204, 2007.
[16] Denis, A., Grzegorczyk, W., Gac, W., Machocki, A., “Steam reforming of ethanol over Ni/support catalysts for generation of hydrogen for fuel cell applications,” Catalysis Today., Vol. 137, pp. 453 – 459, 2008.
[17]Wang, F., Li, Y., Cai, W., Zhan, E., Mu, X., Shen, W., “Ethanol steam reforming over Ni and Ni–Cu catalysts,” Catalysis Today, 2009.
[18]Fatsikostas, A. N., Kondarides, D. I., Verykios, X. E., “ Production of hydrogen for fuel cells by reformation of biomass-derived ethanol,” Catalysis Today, Vol. 75, pp. 145-155, 2002.
[19]Fatsikostas, A. N., Verykios, X. E., “Reaction network of steam reforming of ethanol over Ni-based catalysts,” Journal of Catalysis, Vol. 225, pp. 439-452, 2004.
[20]Vaidya, P. D., Rodrigues, A. E., “Insight into steam reforming of ethanol to produce hydrogen for fuel cells,” Chemical Engineering Journal, Vol. 117, pp. 39-49, 2006.
[21]Sun, G.B., Hidajat, K., Wu, X.S., Kawi, S., “A crucial role of surface oxygen mobility on nanocrystalline Y2O3 support for oxidative steam reforming of ethanol to hydrogen over Ni/Y2O3 catalysts,” Applied Catalysis B: Environmental, Vol. 81, pp. 303-312, 2008.
[22]Zhou, B., Liu, B., Jiang, L. P., Zhu, J. J., “Ultrasonic-assisted size-controllable synthesis of Bi2Te3 nanoflakes withelectrogenerated chemiluminescence,” Ultrasonics Sonochemistry, Vol. 14, pp. 229–234, 2007.
[23]Zhou, L., Wang, W., Zhang, L., “Ultrasonic-assisted synthesis of visible-light-induced Bi2MO6 (M =W, Mo) photocatalysts,” Journal of Molecular Catalysis A: Chemical, Vol. 268, pp. 195-200, 2007.
[24]Neppolian, B., Wang, Q., Jung, H., Choi, H., “Ultrasonic-assisted sol-gel method of preparation of TiO2 nano-particles: Characterization, properties and 4-chlorophenol removal application,” Ultrasonics Sonochemistry, Vol. 15, pp. 649-658, 2008.
[25]Nishida, I., “Precipitation of calcium carbonate by ultrasonic irradiation,” Ultrasonics Sonochemistry, Vol. 11, pp. 423-428, 2004.
[26]Neumann, A. Walter, D., “The thermal transformation from lanthanum hydroxideto lanthanum hydroxide oxideirradiation,” Thermochimica Acta, Vol. 445, pp. 200-204, 2006.
[27]Mazloumi, M., Shahcheraghi, N., Kajbafvala, A., Zanganeh, S., Lak, A .,Mohajerani, M.S., Sadrnezhaad, S.K., “3D bundles of self-assembled lanthanum hydroxide nanorods via a rapidmicrowave-assisted route,” Journal of Alloys and Compounds, Vol. 473, pp. 283-287, 2009.
[28]Ozawa, M., Onoe, R., Kato, H., “Formation and decomposition of some rare earth (RE = La, Ce, Pr) hydroxides and oxides by homogeneous precipitation,” Journal of Alloys and Compounds, Vol. 408, pp. 556-559, 2006.
[29]Djerdj, I., Garnweitner, G., Su, D. S., Niederberger, M., “Morphology-controlled nonaqueous synthesis of anisotropiclanthanum hydroxide nanoparticles,” Journal of Solid State Chemistry, Vol. 180, pp. 2154-2165, 2007.
[30]Ruckenstein, E., Hu, Y. H., “Interactions between Ni and La2O3 in Ni/La2O3 Catalysts Prepared Using Different Ni Precursors,” Journal of Catalysis, Vol. 161, pp. 55-61, 1996.
[31]Choudhary, V. R., Uphade, B. S., Belhekar, A. A., “Oxidative Conversion of Methane to Syngas over LaNiO3 Perovskite with or without Simultaneous Steam and CO2 Reforming Reactions: Influence of Partial Substitution of La and Ni,” Journal of Catalysis, Vol. 163, pp. 312-318, 2006.
[32]Guo, J., Lou, H., Zhu, Y Zheng, X., “La-based perovskite precursors preparation and its catalyticactivity for CO2 reforming of CH4,” Materials Letters, Vol. 57, pp. 4450-4455, 2003.
[33]Batiot-Dupeyrat, C., Valderrama, G., Meneses, A., Martinez, F., Barrault, J., Tatibouët, J.M., “Pulse study of CO2 reforming of methane over LaNiO3,” Applied Catalysis A: General, Vol. 248, pp. 143-151, 2003.
[34]Cai,W., Zhang, B., Li, Y., Xu, Y., Shen, W. j., “Hydrogen production by oxidative steam reformingof ethanol over an Ir/CeO2 catalyst,” Catalysis Communications, Vol. 8, pp. 1588-1594, 2007.
[35]Cai, W., Wang, F., Zhan, E., Van Veen, A. C., Mirodatos, C., Shen, W. j., “Hydrogen production from ethanol over Ir/CeO2 catalysts: A comparative study of steam reforming, partial oxidation and oxidative steam reforming,” Journal of Catalysis, Vol. 257, pp. 96-107, 2008.
[36]Zhang,L., Li, W., Liu, J., Guo, C., Wang, Y., Zhang, J., “Ethanol steam reforming reactions over Al2O3 •SiO2-supported Ni–La catalysts,” Fuel, Vol. 88, pp. 511-518, 2009
[37]李嘉展, “氧化鈷觸媒應用於乙醇蒸氣重組反應之研究” ,碩士論文,國防大學理工學院應用化學研究所,桃園,2007。
[38]Fierro, V., Akdim, O., Provendier, H., Mirodatos, C., “Ethanol oxidative steam reforming over Ni-based catalysts,” Journal of Power Sources, Vol. 145, pp. 659-666, 2005.
[39]Gallego, G. S., Mondrago´n, F., Barrault , J., Tatiboue¨t, J. M., Batiot-Dupeyrat, C., “CO2 reforming of CH4 over La–Ni based perovskite precursors ,” Applied Catalysis A: General, Vol. 311, pp. 164-171, 2006.
[40]Idriss, H., Diagne, C., Hindermann , J. P., Kiennemann, A., Barteau, M. A., “Reactions of acetaldehyde on CeO2 and CeO2-supported Catalysts ,” Journal of Catalysis, Vol. 155, pp. 219-237, 1995.
[41]Benito, M., Padilla, R., Serrano-Lotina, A., Rodriguez, L., Brey, J. J., Daza, L., “The role of surface reactions on the active and selective catalyst design for bioethanol steam reforming ,” Journal of Power Sources, Vol. 192, pp. 158-164, 2009.
[42]畢家麟, “支撐性鉑-釕觸媒在乙醇製氫上之研究” ,博士論文,國防大學中正理工學院國防科學研究所,桃園,2007。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top