|
Alspach, B. (1983). The classification of hamiltonian generalized Petersen graphs. Journal of Combinatorial Theory, Series B, 34(3), 293-312. Arden, B. W., & Lee, H. (1981). Analysis of chordal ring network. Computers, IEEE Transactions on, 100(4), 291-295. Bermond, J. C., Comellas, F., & Hsu, D. F. (1995). Distributed loop computer-networks: a survey. Journal of Parallel and Distributed Computing, 24(1), 2-10. Brualdi, R. A., & Massey, J. J. Q. (1993). Incidence and strong edge colorings of graphs. Discrete Mathematics, 122(1), 51-58. Ding K.F., Pai K.J., Chang J.M., and Tsaur R.H. (2015). Some Results of Incidence Coloring on Generalized Petersen Graphs, International Computer Symposium (ICS) Held at Taichung, December 12–14, 2014(274), 83-89. Dolama, M. H., & Sopena, E. (2005). On the maximum average degree and the incidence chromatic number of a graph. Discrete Mathematics & Theoretical Computer Science, 7(1), 203-216. Dolama M.H., Sopena É., and Zhu X. (2004). Incidence coloring of k-degenerated graphs,Discrete Math. 283, 121-128. Guiduli, B. (1997). On incidence coloring and star arboricity of graphs. Discrete Mathematics, 163(1), 275-278. Huang, C. I., Wang, Y. L., & Chung, S. S. (2004). The incidence coloring numbers of meshes. Computers & Mathematics with Applications, 48(10), 1643-1649. Li, D., & Liu, M. (2008). Incidence coloring of the squares of some graphs.Discrete Mathematics, 308(24), 6569-6574. Li, X., & Tu, J. (2008). NP-completeness of 4-incidence colorability of semi-cubic graphs. Discrete Mathematics, 308(7), 1334-1340. Mans, B. (1999). On the interval routing of chordal rings. In Parallel Architectures, Algorithms, and Networks, 1999.(I-SPAN'99) Proceedings. Fourth InternationalSymposium on (pp. 16-21). Maydanskiy, M. (2005). The incidence coloring conjecture for graphs of maximum degree 3. Discrete mathematics, 292(1), 131-141. Meng, X., Guo, J., & Su, B. (2012). Incidence coloring of pseudo-Halin graphs.Discrete Mathematics, 312(22), 3276-3282. Nakprasit, K., & Nakprasit, K. (2012). Incidence colorings of the powers of cycles. International Journal of Pure and Applied Mathematics, 76, 143-148. Pai, K. J., Chang, J. M., Yang, J. S., & Wu, R. Y. (2014a). Incidence coloring on hypercubes. Theoretical Computer Science, 557, 59-65. Pai, K. J., Chang, J. M., Yang, J. S., & Wu, R. Y. (2014b). On the incidence coloring number of folded hypercubes. In Computer Science and Engineering Conference (ICSEC), 2014 International (pp. 7-11). Sun, P. K. (2012). Incidence coloring of regular graphs and complement graphs. Taiwanese Journal of Mathematics, 16(6), 2289-2295. Shiu, W. C., Lam, P. C. B., & Chen, D. L. (2002). On incidence coloring for some cubic graphs. Discrete mathematics, 252(1), 259-266. Sopena, É., & Wu, J. (2013). The incidence chromatic number of toroidal grids.Discussiones Mathematicae Graph Theory, 33(2), 315-327. Watkins, M. E. (1969). A theorem on Tait colorings with an application to the generalized Petersen graphs. Journal of Combinatorial Theory, 6(2), 152-164. Wu, J. (2009). Some results on the incidence coloring number of a graph.Discrete Mathematics, 309(12), 3866-3870. Wang, S. D., Chen, D. L., & Pang, S. C. (2002). The incidence coloring number of Halin graphs and outerplanar graphs. Discrete mathematics, 256(1), 397-405.
|