跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.110) 您好!臺灣時間:2025/09/28 00:57
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:王俊喻
研究生(外文):Jiun-Yu Wang
論文名稱:尺寸對於矽奈米線陣列之場發特性及鎳矽化物/矽異質結構奈米線之電性的影響
論文名稱(外文):Size effect on Field Emission properties of Si nanowires arrays and electronic properties of Ni-Silicide/Si heterostructure nanowires
指導教授:許薰丰
指導教授(外文):Hsun-Feng Hsu
口試委員:吳文偉葉炳宏
口試日期:2012-07-31
學位類別:碩士
校院名稱:國立中興大學
系所名稱:材料科學與工程學系所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:108
中文關鍵詞:奈米線陣列鎳矽化物場發射蕭特基能障
外文關鍵詞:nanowire arraysnickel-silicidefield-emissionschottky barrier
相關次數:
  • 被引用被引用:5
  • 點閱點閱:205
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
奈米尺度的蕭特基接觸(Schottky Contact)應用於二極體、蕭特基場效電晶體及太陽能電池上之研究被廣為探討,而其中具有蕭特基特性的金屬矽化物/矽奈米異質接面受到相當大的注目,因其能相容於矽基元件。
  本實驗以奈米球微影法及金屬輔助催化蝕刻製備矽奈米線陣列,並以氫氧化鉀溶液對矽奈米線進行蝕刻,並且在低溫下利用反應式磊晶法及傾斜入射角方式蒸鍍鎳金屬於奈米線陣列尖端,以成長鎳矽化物/矽異質結構奈米線。
  研究結果顯示,隨著矽奈米線直經減小,場發射效應之起始電場下降及場發射增強因子上升,表示高寬比的增加可提升奈米線陣列的場發射性質。經在400°C以傾斜入射角方式蒸鍍鎳金屬之後,在矽奈米線尖端生成鎳矽化物,在與矽之界面處為NiSi2相,當奈米線尺寸小於70 nm時,矽化物的頭端為Ni2Si相。NiSi2 /矽異質接面為蕭基接面,蕭特基能障高度在0.39-0.45 eV之間,理想因子則介於3.1 - 3.5之間。


Nanoscale Schottky contact used for diodes, Schottky barrier field effect transistors and solar cells have been extensively studied. The Schottky metal silicide/Si heterojunctions in nanostructures have been widely investigated due to their applicability to Si-based devices.
The free-standing Si NW arrays have been fabricated by the combining nanosphere lithography with metal-assisted catalytic etching. Further, chemical etching using a KOH solution was performed for adjusting the diameter of nanowires. Then, nickel silicide/Si heterostructure nanowires were formed by reactive deposition epitaxy and a glancing angle deposition technique.
The results show that with reducing the diameter of Si nanowires, the turn-on field decreased and field emission enhancement factor increased. This phenomenon indicated that increasing the aspect ratio of nanowires can improve their field emission properties. Ni-silicides were formed at the apex of Si nanowires after depositing Ni at 400°C by the glancing angle deposition technique. The phase of silicide at the silicide/Si interface was NiSi2. When the diameter of nanowires reduced to 70 nm the front end of silicide was Ni2Si. The NiSi2/silicon heterojunction was Schottky contact. The Schottky barrier height was in the range of 0.39 to 0.45 eV, and the ideal factor was in the range of 3.1 to 3.5.


目錄
摘要 I
Abstract II
表目錄 VIII
圖目錄 IX
第一章 前言 1
第二章 文獻回顧 4
2-1 奈米球微影術 4
2-1-1 奈米球微影術 4
2-1-2 奈米球自組裝機制 4
2-2 奈米球自組裝技術 5
2-2-1 旋轉塗佈法 5
2-2-2 自然滴製法 6
2-2-3 LB-like 自組裝技術 7
2-3 反應式離子蝕刻技術 8
2-4 矽奈米線 9
2-4-1 從下而上(Bottom-up)方式成長矽奈米線的機制 9
2-4-1-1 氧化物輔助成長機制(Oxide-Assisted Growth Mechanism, OAG)…. 10
2-4-1-2 氣-固成長機制(Vapor-Solid Mechanism, VS) 11
2-4-1-3 氣-液-固成長機制(Vapor-Liquid-Solid Mechanism, VLS) 12
2-4-1-4 固-液-固成長機制(Solid-Liquid-Solid Mechanism, SLS) 12
2-4-1-5 液-液-固成長機制(Solution-Liquid-Solid Mechanism, SLS) 13
2-4-2 矽奈米線成長方法 14
2-4-2-1 雷射消融法(Laser Ablation) 14
2-4-2-2 化學氣相沈積法(Chemical Vapor Deposition, CVD) 15
2-4-2-3 熱蒸鍍法(Thermal Evaporation) 15
2-4-2-4 無電鍍法 (Electroless Plating) 16
2-4-2-5 金屬輔助催化蝕刻法(Metal-Assisted Chemical Etching) 16
2-5 矽晶之蝕刻 17
2-5-1 乾式蝕刻 17
2-5-2 濕式蝕刻 18
2-5-2-1 非等向性蝕刻 18
2-5-2-2 等向性蝕刻 19
2-5-2-3 濕式蝕刻原理 19
2-5-3 非等向性蝕刻對矽奈米線影響 21
2-6 金屬矽化物 22
2-6-1 鈦矽化物 22
2-6-2 鈷矽化物 23
2-6-3 鎳矽化物 23
2-7 反應式磊晶法成長金屬矽化物奈米線 24
2-7-1 鈷矽化物奈米線 24
2-7-2 鈦矽化物奈米線 24
2-7-3 鎳矽化物奈米線 24
2-8 研究動機 25
第三章 實驗步驟 27
3-1 製備聚苯乙烯球陣列、矽奈米線陣列及矽奈米線陣列細化 27
3-1-1 基材前處理 27
3-1-2 自組裝聚苯乙烯球陣列 28
3-1-3 縮減聚苯乙烯球作為微影之遮罩 28
3-1-4 銀金屬之濺鍍作為催化劑 28
3-1-5 製備矽奈米線陣列 29
3-1-6 矽奈米線陣列經氫氧化鉀溶液蝕刻細化 29
3-2 製備鎳矽化物/矽異質結構奈米線 30
3-3 鎳矽化物/矽異質結構奈米線陣列之場發性質量測 30
3-4 鎳矽化物/矽異質結構奈米線陣列之接面電性量測 30
3-5 實驗與分析儀器 30
3-5-1 感應耦合式電漿蝕刻系統 30
3-5-2 精密離子蝕刻鍍膜系統(Precision Etching Coating System) 31
3-5-3 場發射掃瞄式電子顯微鏡(Field Emission-SEM) 31
3-5-4 穿透式電子顯微鏡(TEM) 31
3-5-5 高解析穿透式電子顯微鏡(HRTEM) 31
3-5-6 原子力顯微鏡(AFM) 31
第四章 結果與討論 33
4-1 利用奈米球陣列作為微影之遮罩 33
4-1-1 影響奈米球排列之因素 33
4-1-2 反應式離子蝕刻聚苯乙烯球 34
4-1-3 金屬輔助催化蝕刻法製備矽奈米線陣列 34
4-1-4 以氫氧化鉀溶液蝕刻矽奈米線 35
4-1-4-1 以氫氧化鉀溶液蝕刻矽奈米線之反應動力學 35
4-1-4-2 矽奈米線經氫氧化鉀溶液蝕刻之形態變化 36
4-2 矽奈米線的尺寸對場發特性的影響 37
4-3 鎳矽化物/矽異質結構奈米線之製備及結構分析 39
4-3-1 矽奈米線陣列於400°C磊晶成長鎳矽化物/系異質結構奈米線(H-NW0) 39
4-3-2 矽奈米線陣列經KOH溶液蝕刻3秒,並於400°C磊晶成長鎳矽化物/系異質結構奈米線(H-NW3) 40
4-3-3 矽奈米線陣列經KOH溶液蝕刻5秒,並於400°C磊晶成長鎳矽化物/系異質結構奈米線(H-NW5) 40
4-3-4 鎳矽化物/矽奈米線異質結構之成長機制 41
4-4 鎳矽化物/矽異質結構奈米線之接面電性 42
第五章 結論 44
參考文獻 94
附錄 103

表目錄
表 4 1不同尺寸奈米線之場發特性 45
表 4 2不同形貌之場發特性 46
表 4 3鎳矽化物/矽異質結構奈米線之接面電性 47


圖目錄
圖 2 1 奈米球微影術(NSL)之圖案轉移式意圖 48
圖 2 2 N. D. D等人的實驗裝置架構 49
圖 2 3 水流作用力(Convective Water Flux)機制示意圖 50
圖 2 4 J. Rybczynski等人實驗流程示意圖 51
圖 2 5 P. I. Stavroulakis 等人實驗裝置示意圖 52
圖 2 6 Mun Ho Kim 等人實驗裝置示意圖 53
圖 2 7 雷射消融法實驗裝置圖 54
圖 2 8 化學氣相沉積法實驗裝置圖 54
圖 2 9 熱蒸鍍法實驗裝置圖 54
圖 2 10 無電鍍化學蝕刻法製備矽奈米線之示意圖 54
圖 2 11 非等向性蝕刻示意圖 56
圖 2 12 等向性蝕刻示意圖 57
圖 2 13 經KOH非等向性蝕刻形貌變化之示意圖。 58
圖 3 1 製備鎳矽化物奈米線實驗流程圖 59
圖 3 2 鋪排聚苯乙烯球於矽基材之示意圖 62
圖 3 3 場發性質量測裝置示意圖 64
圖 3 4 量測接面電性之示意圖 65
圖 4 1 聚苯乙烯球單層之有序陣列之SEM影像圖 66
圖 4 2 以O離子蝕刻直徑220 nm之聚苯乙烯球,經 (a) 60 s (b) 65 s (c) 70 s蝕刻之SEM 影像圖 67
圖 4 3 以奈米球微影作為遮罩,結合金屬輔助催化蝕刻法形成矽奈米線陣列 (a) 2萬倍(b) 4萬倍 之SEM 影像圖 68
圖 4 4 不同反應溫度下,Si-NWs直徑對蝕刻時間之關係圖 69
圖 4 5 不同反應溫度下,將蝕刻速率取自然對數與絕對溫度的倒數(1000/T)之關係圖 70
圖 4 6 氫氧化鉀溶液對矽奈米線尺寸影響之示意圖 71
圖 4 7 Si-NWs於20 wt% KOH 溶液蝕刻 (a) 0s (b) 3s (c) 5s (d) 10s (e) 25s (f) 25s後超音波震盪之SEM影像圖 72
圖 4 8 以KOH於40。C蝕刻Si-NWs經(a)、(d) 0s (b)、(e) 3s (c)、(f) 5s 蝕刻之SEM影像圖 73
圖 4 9 無奈米球微影作為遮罩,單以金屬催化蝕刻所形成的奈米線束之SEM影像圖 74
圖 4 10 Si-NWs、Si-NWs經KOH蝕刻5秒、Si-NWs經KOH蝕刻3秒及無聚苯乙烯奈米球作為遮罩經銀催化蝕刻所形成的奈米線束之場發特性圖 75
圖 4 11 F-N 特性圖,(a) Si-NWs (b) Si-NWs (c)Si-NWs經KOH蝕刻5秒(d) 無聚苯乙烯奈米球作為遮罩,經KOH蝕刻3秒所形成的奈米線束之場發特性圖 76
圖 4 12 Si-NWs經KOH 40。C蝕刻(a)0秒 (b)3秒 (c)5秒蒸鍍前 及Si-NWs經KOH 40。C蝕刻(d)0秒 (e)3秒 (f)5秒 後以RDE方法在600。C下入射角為20°蒸鍍鎳金屬於奈米線前端之SEM影像圖 78
圖 4 13 經 20wt%,40。C氫氧化鉀溶液蝕刻 0 秒之鎳矽化物/矽異質結構奈米線,(a) TEM 影像,(b)(a)圖中虛線圓框內選區繞射圖 79
圖 4 14經 20wt%,40。C氫氧化鉀溶液蝕刻 0 秒之鎳矽化物/矽異質結構奈米線,(a) TEM 影像,(b)為奈米線前端 TEM 影像,(c)為(b)圖中方框內(異質界面)放大 HRTEM 影像,(d)為(c)圖中方框內放大之原子影像 80
圖 4 15矽奈米線(a)TEM影像及(b)前端 TEM影像圖 81
圖 4 16經 20wt%,40。C氫氧化鉀溶液蝕刻 3 秒之鎳矽化物/矽異質結構奈米線,(a)為奈米線前端 TEM 影像,(b)、(c)分別為頭端、中段純矽之選區繞射圖形 82
圖 4 17經 20wt%,40。C氫氧化鉀溶液蝕刻 3 秒之鎳矽化物/矽異質結構奈米線,(a) TEM 影像,(b)為奈米線前端 TEM 影像,(c)為(b)圖中方框(異質界面)內放大 HRTEM 影像,(d)為(c)圖中方框內放大之原子影像 83
圖4 18經 20wt%,40。C氫氧化鉀溶液蝕刻 3 秒之鎳矽化物/矽異質結構奈米線,(a) TEM 影像,(b)為奈米線前端 TEM 影像,(c)為(b)圖中方框內(頭端)放大 HRTEM 影像,(d)為(c)圖中方框內放大之原子影像 84
圖4 19經 20wt%,40。C氫氧化鉀溶液蝕刻 5 秒之鎳矽化物/矽異質結構奈米線,(a)為TEM影像,(b)、 (c)分別為異質界面、頭端鎳矽化物之選區繞射圖形 85
圖 4 20 經 20wt%,40。C氫氧化鉀溶液蝕刻 5 秒之鎳矽化物/矽異質結構奈米線,(a) TEM 影像,(b)為奈米線前端 TEM 影像,(c)為(b)圖中方框內(異質界面)放大 HRTEM 影像,(d)為(c)圖中方框內放大之原子影像 86
圖 4 21經 20wt%,40。C氫氧化鉀溶液蝕刻 5 秒之鎳矽化物/矽異質結構奈米線,(a) TEM 影像,(b)為奈米線前端 TEM 影像,(c)為(b)圖中方框內(頭端)放大 HRTEM 影像,(d)為(c)圖中方框內放大之原子影像 87
圖 4 22 Si-NWs經20wt% KOH 溶液40。C下蝕刻 0秒,RDE 400。C NiSi2/Si異質結構奈米線之 (a)AFM影像圖及AFM探針量測施加的力分別為 (b)224 (c)560 (d)1204 (e)1652 (f)2128 nN之I-V曲線圖 88
圖 4 23 Si-NWs經20wt% KOH 溶液40。C下蝕刻 3秒,RDE 400。C NiSi2/Si異質結構奈米線之 (a)AFM影像圖及AFM探針量測施加的力分別為(b)224 (c)560 (d)1008 (e)1484 (f)1932 nN之I-V圖 89
圖 4 24 Si-NWs經20wt% KOH 溶液40。C下蝕刻5秒,RDE 400。C Ni2Si/NiSi2/Si異質結構奈米線之 (a)AFM影像圖及AFM探針量測施加的力分別為 (b)232 (c)493 (d)899 (e)1421 (f)2146 nN 之I-V線圖 90
圖 4 25 Si-NWs經20wt% KOH 溶液40。C下蝕刻 0秒,RDE 400。C NiSi2/Si異質結構奈米線之 (a)I-V 半對數曲線 (b)I-V 線性擬合曲線 91
圖 4 25 Si-NWs經20wt% KOH 溶液40。C下蝕刻 3秒,RDE 400。C NiSi2/Si異質結構奈米線之 (a)I-V 半對數曲線 (b)I-V 線性擬合曲線 92
圖 4 25 Si-NWs經20wt% KOH 溶液40。C下蝕刻 5秒,RDE 400。C Ni2Si/NiSi2/Si異質結構奈米線之 (a)I-V 半對數曲線 (b)I-V 線性擬合曲線 93



[1-1]K. Liu, J. L. Vicent, I. K. Schuller, J. I. Mart, and J. Nogu, “Ordered magnetic nanostructures : fabrication and properties”, Journal of Magnetism and Magnetic Materials 256, 449 (2003).
[1-2]H. W. Deckman, and J. H. Dunsmuir, “Solid phase epitaxial recrystallization of thin polysilicon films amorphized by silicon ion implantation”, Appl. Phys. Lett. 41, 40377 (1982).
[1-3]J. C. Hulteen, and R. P. V. Duyne, “Nanosphere lithography : A materials general fabrication process for periodic particle array surfaces”, J. Vac. Sci. Technol. A 13, 1553 (1995).
[1-4]Y. Cui, Z. Zhong, D. Wang, W. U. Wang, and C. M. Lieber, “High performance silicon nanowire field effect transistors”, Nano Letters, 3, 149 (2003).
[1-5]T. Stelzner, M. Pietsch, G. Andra, F. Falk, E. Ose, and S. Christiansen, “Silicon nanowire-based solar cells”, Nanotechnology 19, 295203 (2008).
[1-6]J. C. She, S. Z. Deng, N. S. Xu, R. H.Yao, and J.Chen, “Fabrication of vertically aligned Si nanowires and their application in a gated field emission device”, Applied Physics Letters 88, 013112 (2006).
[1-7]A. M. Morales, “A laser ablation method for the synthesis of crystalline semiconductor nanowires”, science 279, 208 (1998).
[1-8]Z. Zhang, X. H. Fan, L. Xu, C. S. Lee, and S. T. Lee, “Morphology and growth mechanism study of self-assembled silicon nanowires synthesized by thermal evaporation”, Chemical Physics Letters 337, 18 (2001).
[1-9]N. Wang, Y. Cai and R. Q. Zhang, “Growth of nanowires”, Materials Science and Engineering: R: Reports 60, 1 (2008).
[1-10]X. Li and P. W. Bohn. “Metal-assisted chemical etching in HF/H2O2 produces porous silicon”, Applied Physics Letters 77,16
[1-11]T. R Society, R. C. Society, and P. Character, “Electron emission in intense electric fields”, Royal Society of London. Series A, Containing Papers of a Published, 119, 173 (1928).
[1-12]L. W. Nordheim, “The effect of the image force on the emission and reflexion of electrons by metals”, Physical and Engineering Sciences, 121, 626(1928).
[1-13]C. a. Spindt, “A thin-film field-emission cathode”, Journal of Applied Physics, 39, 3504 (1968).
[1-14]C. a. Spindt, “Physical properties of thin-film field emission cathodes with molybdenum cones”, Journal of Applied Physics, 47(12), 5248 (1976).
[2-1]X. Zhang, A. V. Whitney, J. Zhao, E. M. Hicks, and R. P. Van Duyne, “Advances in contemporary nanosphere lithographic techniques”, Journal of Nanoscience and Nanotechnology, 6, 1920 (2006)
[2-2]P. C. Tseng, M. A. Tsai, P. Yu, and H. C. Kuo, “Antireflection and light trapping of subwavelength surface structures formed by colloidal lithography on thin film solar cells”, Appl, 135 (2012).
[2-3]A. Kosiorek, W. Kandulski, H. Glaczynska, and M. Giersig, “Fabrication of nanoscale rings, dots, and rods by combining shadow nanosphere lithography and annealed polystyrene nanosphere masks”, small-joirnal, 1, 439 (2005).
[2-4]S. Xiao, X. Yang, E. W. Edwards, Y.-H. La, and P. F. Nealey, “Graphoepitaxy of cylinder-forming block copolymers for use as templates to pattern magnetic metal dot arrays”, Nanotechnology, 16, S324–9 (2005).
[2-5]Y. Li, J. Sun, L. Wang, P. Zhan, Z. Cao, and Z. Wang, “Surface plasmon sensor with gold film deposited on a two-dimensional colloidal crystal”, Applied Physics A, 92(2), 291 (2008).
[2-6]T.-Y. Tsai, T.-H. Chen, N.-H. Tai, S.-C. Chang, H.-C. Hsu, and T. J. Palathinkal, “The fabrication of a carbon nanotube array using a catalyst-poisoning layer in the inverse nano-sphere lithography method”, Nanotechnology, 20, 305303 (2009).
[2-7]N. D. D. D. Velev, P. A. K. I. B. Ivanov, H. Yoshimura, and K. Nagayamat, “Mechanism of formation of two-dimensional crystals from latex particles on substrates”, Langmuir,8, 3183 (1992).
[2-8]H. W. Deckman, and J. H. Dunsmuir, “Solid phase epitaxial recrystallization of thin polysilicon films amorphized by silicon ion implantation”, Appl. Phys. Lett.41,40377 (1982).
[2-9]J. C. Hulteen, D. a. Treichel, M. T. Smith, M. L. Duval, T. R. Jensen, and R. P. Van Duyne, “Nanosphere lithography: size-tunable silver nanoparticle and surface cluster arrays”, The Journal of Physical Chemistry B, 103, 3854 (1999).
[2-10]M. Retsch, Z. Zhou, S. Rivera, M. Kappl, X. S. Zhao, U. Jonas, and Q. Li, “Fabrication of large-area, transferable colloidal monolayers utilizing self-assembly at the Air/Water interface”. Macromolecular Chemistry and Physics, 210, 230 (2009).
[2-11]N. D. D. D. Velev, P. A. K. I. B. Ivanov, H. Yoshimura, and K. Nagayamat, “Mechanism of formation of two-dimensional crystals from latex particles on substrates”, Langmuir ,(17), 3183 (1992).
[2-12] R. Micheletto, H. Fukuda, and M. Ohtsut, “A simple method for the production of a two-dimensional”, Ordered Array of Small Latex Particles, Langmuir,11, 3333 (1999).
[2-13]N. D. D. D. Velev, P. A. K. I. B. Ivanov, H. Yoshimura, and K. Nagayamat, “Mechanism of formation of two-dimensional crystals from latex particles on substrates”, langmuir , (17), 3183 (1992).
[2-14]J. Rybczynski, U. Ebels, and M. Giersig, “Large-scale, 2D arrays of magnetic nanoparticles”, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 219, 1 (2003).
[2-15]P. I. Stavroulakis, N. Christou, and D. Bagnall, “Improved deposition of large scale ordered nanosphere monolayers via liquid surface self-assembly”, Materials Science and Engineering: B, 165, 186 (2009).
[2-16]A. S. Dimitrov, and K. Nagayama, “Continuous convective assembling of fine particles into two-dimensional arrays on solid surfaces”. Langmuir, 12, 1303 (1996).
[2-17]M. H. Kim, S. H. Im, and O. O. Park, “Rapid fabrication of two- and three-dimensional colloidal crystal films via confined convective assembly”, Advanced Functional Materials, 15, 1329 (2005).
[2-18]W. Li, W. Zhao, and P. Sun, “Fabrication of highly ordered metallic arrays and silicon pillars with controllable size using nanosphere lithography”, Physica E: Low-dimensional Systems and Nanostructures, 41, 1600 (2009).
[2-19]A. Plettl, F. Enderle, M. Saitner, A. Manzke, C. Pfahler, S. Wiedemann, and P. Ziemann, “Non-close-packed crystals from self-assembled polystyrene spheres by isotropic plasma etching”: Adding Flexibility to Colloid Lithography. Advanced Functional Materials, 19, 3279 (2009).
[2-20]C. Cong, W. C. Junus, Z. Shen, and T. Yu, “New colloidal lithographic nanopatterns fabricated by combining pre-heating and reactive ion etching”, Nanoscale research letters, 4, 1324 (2009).
[2-21]B. Yan, Q. Zhu, W. B. Hu, W. K. Hsu, M. Terrones, N. Grobert, T. Karali, et al. “A simple route to silicon-based nanostructures”, Adv. Mater., 296, 844 (1999).
[2-22]B. F. Marlow, M. D. Mcgehee, D. Zhao, B. F. Chmelka, and G. D. Stucky, “Doped mesoporous silica fibers : a new laser material”, Adv. Mater., 11, 632 (2002).
[2-23]T. Stelzner, M. Pietsch, G. Andra, F. Falk, E. Ose, and S. Christiansen, “Silicon nanowire-based solar cells”, Nanotechnology, 19, 295203 (2008).
[2-24]Y. Cui, Z. Zhong, D. Wang, W. U. Wang, and C. M. Lieber, “High performance silicon nanowire field effect transistors”, Nano Letters, 3, 149 (2003).
[2-25]J. C. She, S. Z. Deng, N. S. Xu, R. H. Yao, and J. Chen, “Fabrication of vertically aligned Si nanowires and their application in a gated field emission device”, Applied Physics Letters, 88, 013112 (2006).
[2-26]T. Hanrath, and B. a. Korgel, “Nucleation and growth of germanium nanowires seeded by organic monolayer-coated gold nanocrystals”, Journal of the American Chemical Society, 124, 1424 (2002).
[2-27]R.-Q. Zhang, Y. Lifshitz, and S.-T. Lee, “Oxide-assisted growth of semiconducting nanowires”, Advanced Materials, 15, 635 (2003).
[2-28]H. Search, C. Journals, A. Contact, M. Iopscience, and I. P. Address, “Aligned silica nanofibres”, J. Phys.: Condens. Matter 14, L473 (2002).
[2-29]L. Dai, X. L. Chen, T. Zhou, B. Q. Hu, J. K. Jian, and W. J. Wang, “Strong blue photoluminescence from aligned silica nanofibers”, Applied Physics A: Materials Science and Processing, 76, 625 (2003).
[2-30]R. S. Wagner, and W. C. Ellis, “Vapor-liquid-solid mechanism of single crystal growth”, Applied Physics Letters, 4, 89 (1964).
[2-31]C. Ellis, “The vapor-liquid-solid mechanism of crystal growth” , 233(June) (1965).
[2-32]H. F. Yan, Y. J. Xing, Z. H. Xi, and S. Q. Feng, “Growth of amorphous silicon nanowires via a solid – liquid – solid mechanism”, Chemical Physics Letters, 323,224 (2000).
[2-33] H.-K. Park, B. Yang, S.-W. Kim, G.-H. Kim, D.-H. Youn, S.-H. Kim, and S.-L. Maeng, “Formation of silicon oxide nanowires directly from Au/Si and Pd–Au/Si substrates”, Physica E: Low-dimensional Systems and Nanostructures, 37, 158 (2007).
[2-34]T. J. Trentler, K. M. Hickman, S. C. Goel, A. M. Viano, P. C. Gibbons, and W. E. Buhro, “Solution-liquid-solid growth of crystalline III-V semiconductors: an analogy to vapor-liquid-solid growth”, Science, 270, 1791 (1995).
[2-35]X. Lu, D. D. Fanfair, K. P. Johnston, and B. a. Korgel, “High yield solution-liquid-solid synthesis of germanium nanowires”, Journal of the American Chemical Society, 127, 15718 (2005).
[2-36]X. Lu, T. Hanrath, K. P. Johnston, and B. a. Korgel, “Growth of Single Crystal Silicon Nanowires in Supercritical Solution from Tethered Gold Particles on a Silicon Substrate”, Nano Letters, 3, 93 (2003).
[2-37]T. Hanrath, and B. a. Korgel, “Nucleation and growth of germanium nanowires seeded by organic monolayer-coated gold nanocrystals”, Journal of the American Chemical Society, 124, 1424 (2002).
[2-38]A. M. Morales, “A laser ablation method for the synthesis of crystalline semiconductor nanowires”, Science, 279, 208 (1998).
[2-39]K. A. Jeon, J. H. Kim, and S. Y. Lee, “Simple method for synthesis of silicon nanowire: Pulsed laser deposition in furnace from p-Si wafer target”, Progress in Solid State Chemistry, 33, 107 (2005).
[2-40]N. Fukata, T. Oshima, T. Tsurui, S. Ito, and K. Murakami, “Synthesis of silicon nanowires using laser ablation method and their manipulation by electron beam”, Science and Technology of Advanced Materials, 6, 628 (2005).
[2-41]N. Wang, Y. Cai, and R. Q. Zhang, “Growth of nanowires”, Materials Science and Engineering: R: Reports, 60, 1 (2008).
[2-42]Z. Zhang, X. H. Fan, L. Xu, C. S. Lee, and S. T. Lee, “Morphology and growth mechanism study of self-assembled silicon nanowires synthesized by thermal evaporation”, Chemical Physicsc Letters, 337, 18 (2001).
[2-43]K. Peng, A. Lu, R. Zhang, and S.-T. Lee, “Motility of metal nanoparticles in silicon and induced anisotropic silicon etching”, Advanced Functional Materials, 18, 3026 (2008).
[2-44]O. Fellahi, T. Hadjersi, M. Maamache, S. Bouanik, and A. Manseri, “Effect of temperature and silicon resistivity on the elaboration of silicon nanowires by electroless etching”, Applied Surface Science, 257, 591 (2010).
[2-45]X. Li, and P. W. Bohn, “Metal-assisted chemical etching in HF/H2O2 produces porous silicon”, Applied Physics Letter, 77, 16 (2000).
[2-46] K. Peng, Y. Yan, S. Gao, and J. Zhu, “Dendrite-assisted growth of silicon nanowires in electroless metal deposition”, Advanced Functional Materials, 13, 127 (2003).
[2-47]P. J. Holmes, “The electrochemistry of semiconductors”, Academic press, 329, (1962).
[2-48]H. C. Nathanson, R. N.Thomas, J. Guldberg, C. Nathanson, E. Bassous, F. Baran, F. Meeting, et al. “Anisotropic etching of silicon”, ED25, 1185 (1978).
[2-49]J. C. Greenwood, “Ethylene diamine-catechol-water mixture shows preferential etching of p-n junction”, Journal of The Electrochemical Society, 116, 1325 (1969).
[2-50]J. Jin-Young, G. Zhongyi, J. Sang-Won, U. Han-Don, P. Kwang-Tae, and L. Jung-Ho, “Optically improved solar cell using tapered silicon nano wires”, in Nanotechnology (IEEE-NANO), 10th IEEE Conference on, 2010, 1163 (2010).
[2-51]A. Lauwers, P. Besser, T. Gutt, A. Satta, M. D. Potter, R. Lindsay, N. Roelandts, et al. “Comparative study of Ni-silicide and Co-silicide for sub 0.25-mm technologies”, Microelectronic Engineering,50, 103 (2000).
[2-52]C. Detavernier, R. L. V. Meirhaeghe, F. Cardon, and K. Maex, “CoSi2 formation through SiO2”, Thin Solid Films 386. 19_26 (2001).
[2-53]G. Palasantzas, “Roughness effects on the thermal stability of thin films”, Journal of Applied Physics, 81, 246 (1997).
[2-54]F. Zhao, J. Zheng, , Z. Shen T. Osipowicz, W. Gao, and L. Chan, “Thermal stability study of NiSi and NiSi2 thin films”, Microelectronic Engineering, 71, 104 (2004).
[2-55]S. P. Maruarka, “Silicide for VLSI Applications”, Academic Press, New York (1983).
[2-56]Z. He, D. Smith, and P. Bennett, “Endotaxial Silicide Nanowires”, Physical Review Letters, 93, 1(2004).
[2-57]P. a. Bennett, B. Ashcroft, Z. He, and R. M. Tromp, “Growth dynamics of titanium silicide nanowires observed with low-energy electron microscopy”, Journal of Vacuum Science and Technology B: Microelectronics and Nanometer Structures, 20, 2500 (2002).
[2-58]H.-C. Hsu, W.-W. Wu, H.-F. Hsu, and L.-J. Chen, “Growth of high-density titanium silicide nanowires in a single direction on a silicon surface”, Nano Letters, 7, 885 (2007).
[2-59]S. Y. Chen, and L. J. Chen, “Self-assembled epitaxial NiSi2 nanowires on Si(001) by reactive deposition epitaxy”, Thin Solid Films, 508, 222 (2006).
[2-60]S. Y. Chen, and L. J.Chen, “Nitride-mediated epitaxy of self-assembled NiSi2 nanowires on (001)Si”, Applied Physics Letters, 87, 253111 (2005).

[4-1]J. Rybczynski, U. Ebels, and M. Giersig, "Large-scale, 2D arrays of magnetic nanoparticles." Colloids and Surfaces A: Physicochemical and Engineering Aspects, 219, 1 (2003).
[4-2]P.I. Stavroulakis , N. Christou , and D. Bagnall, "Improved deposition of large scale ordered nanosphere monolayers via liquid surface self-assembly”, Materials Science and Engineering: B, 165, 186 (2009).
[4-3]J. Yu, Q. Yan, and D. Shen, “Co-self-assembly of binary colloidal crystals at the air-water interface”, ACS applied materials and interfaces, 2, 1922 (2010).
[4-4]Y. Xia, B. Gates, Y. Yin, and Y. Lu, "Monodispersed colloidal spheres: old materials with new applications”, Advanced Materials, 12, 693 (2000).
[4-5]N. D. D. D. Velev, P. A. K. I. B. Ivanov, H. Yoshimura , and K. Nagayamat, “Mechanism of formation of two-dimensional crystals from latex particles on substrates”, Langmuir 1992,8,3183-3190 (1992).
[4-6]A. Plettl, F. Enderle, M. Saitner, A. Manzke , C. Pfahler, S. Wiedemann, and P. Ziemann, "Non-close-packed crystals from self-assembled polystyrene spheres by isotropic plasma etching: adding flexibility to colloid lithography”, Advanced Functional Materials, 19, 3279 (2009).
[4-7]J. M. Weisse, D. R. Kim, C. H. Lee , and X. Zheng, "Vertical transfer of uniform silicon nanowire arrays via crack formation”, Nano letters, 11, 1300 (2011).
[4-8]M. H. Yun, V. A. Burrows, and M. N. Kozicki, "Analysis of KOH etching of (100) silicon on insulator for the fabrication of nanoscale tips”, J. Vac. Sci. Technol. B 16, 2844 (1998).
[4-9]H. C. Nathanson, R. N. Thomas , J. Guldberg, C. Nathanson, E. Bassous, F. Baran, F. Meeting, et al. “Anisotropic etching of silicon”, ED25, 1185 (1978).
[4-10]J. C. Greenwood, “Ethylene diamine-catechol-water mixture shows preferential etching of p-n junction”, Journal of The Electrochemical Society, 116, 1325 (1969).
[4-11]R. H. Fowler , F.R.S and Dr. L. Nordheim, “Electron emission in intense electric field”, 5.173 (1928).
[4-12]C. Chang , Y. Chang, C. Lee , P. Yeh, W. Lee, and L. Chen, “Ti5Si4 nanobats with excellent field emission properties”, J. Phys. Chem. C,113, 9153 (2009).
[4-13]H. B. Michaelson, “The work function of the elements and its periodicity”, Journal of Applied Physics, 48, 4729 (1977).
[4-14]W. M. Weber , L. Geelhaar, E. Unger, C. Cheze , F. Kreupl, H. Riechert, and P. Lugli, “Silicon to nickel-silicide axial nanowire heterostructures for high performance electronics”, Physica Status Solidi (B), 244, 4170 (2007).
[4-15]A. Katsman, Y. Yaish, E. Rabkin, , and M. Beregovsky, “Surface diffusion controlled formation of nickel silicides in silicon nanowires”, Journal of Electronic Materials, 39, 365 (2010).
[4-16]O. Nakatsuka , K. Okubo, Y. Tsuchiya, A. Sakai, S. Zaima, and Y. Yasuda, “Low-temperature formation of epitaxial NiSi 2 layers with solid-phase reaction in Ni/Ti/Si(001) systems”, Japanese Journal of Applied Physics, 44, 2945 (2005).
[4-17]A. Vantomme, S. Degroote, J. Dekoster , G. Langouche, and R. Pretorius, “Concentration-controlled phase selection of silicide formation during reactive deposition”, Applied Physics Letters, 74, 3137 (1999).
[4-18]C.-Y. Liu, W.-S. Li, L.-W. Chu, M.-Y. Lu, C.-J. Tsai, and L.-J. Chen, “An ordered Si nanowire with NiSi2 tip arrays as excellent field emitters”, Nanotechnology, 22, 055603 (2011).
[4-19]C. H. Ji, W. A. Anderson , “Metal-induced grown Si nanostructures for large-area-device application”, IEEE, 50,1885 (2003).
[4-20]C. Li, G. Fang, S. Sheng, Z. Chen, J. Wang, S. Ma,and X. Zhao, “Raman spectroscopy and field electron emission properties of aligned silicon nanowire arrays”, Physica E: Low-dimensional Systems and Nanostructures, 30, 169 (2005).
[4-21]P. T. Joseph, N. H. Tai, Y. F. Cheng, C. Y. Lee, H. F. Cheng , and I. N. Lin, “Growth and electron field emission properties of ultrananocrystalline diamond on silicon nanostructures”, Diamond and Related Materials, 18, 169 (2009).
[4-22]S.-C. Tseng, H.-L. Chen, C.-C. Yu, Y.-S. Lai, and H.-W. Liu, “Using intruded gold nanoclusters as highly active catalysts to fabricate silicon nanostalactite structures exhibiting excellent light trapping and field emission properties”, Energy and Environmental Science, 4, 5020 (2011).

電子全文 電子全文(本篇電子全文限研究生所屬學校校內系統及IP範圍內開放)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊