|
[1-1]K. Liu, J. L. Vicent, I. K. Schuller, J. I. Mart, and J. Nogu, “Ordered magnetic nanostructures : fabrication and properties”, Journal of Magnetism and Magnetic Materials 256, 449 (2003). [1-2]H. W. Deckman, and J. H. Dunsmuir, “Solid phase epitaxial recrystallization of thin polysilicon films amorphized by silicon ion implantation”, Appl. Phys. Lett. 41, 40377 (1982). [1-3]J. C. Hulteen, and R. P. V. Duyne, “Nanosphere lithography : A materials general fabrication process for periodic particle array surfaces”, J. Vac. Sci. Technol. A 13, 1553 (1995). [1-4]Y. Cui, Z. Zhong, D. Wang, W. U. Wang, and C. M. Lieber, “High performance silicon nanowire field effect transistors”, Nano Letters, 3, 149 (2003). [1-5]T. Stelzner, M. Pietsch, G. Andra, F. Falk, E. Ose, and S. Christiansen, “Silicon nanowire-based solar cells”, Nanotechnology 19, 295203 (2008). [1-6]J. C. She, S. Z. Deng, N. S. Xu, R. H.Yao, and J.Chen, “Fabrication of vertically aligned Si nanowires and their application in a gated field emission device”, Applied Physics Letters 88, 013112 (2006). [1-7]A. M. Morales, “A laser ablation method for the synthesis of crystalline semiconductor nanowires”, science 279, 208 (1998). [1-8]Z. Zhang, X. H. Fan, L. Xu, C. S. Lee, and S. T. Lee, “Morphology and growth mechanism study of self-assembled silicon nanowires synthesized by thermal evaporation”, Chemical Physics Letters 337, 18 (2001). [1-9]N. Wang, Y. Cai and R. Q. Zhang, “Growth of nanowires”, Materials Science and Engineering: R: Reports 60, 1 (2008). [1-10]X. Li and P. W. Bohn. “Metal-assisted chemical etching in HF/H2O2 produces porous silicon”, Applied Physics Letters 77,16 [1-11]T. R Society, R. C. Society, and P. Character, “Electron emission in intense electric fields”, Royal Society of London. Series A, Containing Papers of a Published, 119, 173 (1928). [1-12]L. W. Nordheim, “The effect of the image force on the emission and reflexion of electrons by metals”, Physical and Engineering Sciences, 121, 626(1928). [1-13]C. a. Spindt, “A thin-film field-emission cathode”, Journal of Applied Physics, 39, 3504 (1968). [1-14]C. a. Spindt, “Physical properties of thin-film field emission cathodes with molybdenum cones”, Journal of Applied Physics, 47(12), 5248 (1976). [2-1]X. Zhang, A. V. Whitney, J. Zhao, E. M. Hicks, and R. P. Van Duyne, “Advances in contemporary nanosphere lithographic techniques”, Journal of Nanoscience and Nanotechnology, 6, 1920 (2006) [2-2]P. C. Tseng, M. A. Tsai, P. Yu, and H. C. Kuo, “Antireflection and light trapping of subwavelength surface structures formed by colloidal lithography on thin film solar cells”, Appl, 135 (2012). [2-3]A. Kosiorek, W. Kandulski, H. Glaczynska, and M. Giersig, “Fabrication of nanoscale rings, dots, and rods by combining shadow nanosphere lithography and annealed polystyrene nanosphere masks”, small-joirnal, 1, 439 (2005). [2-4]S. Xiao, X. Yang, E. W. Edwards, Y.-H. La, and P. F. Nealey, “Graphoepitaxy of cylinder-forming block copolymers for use as templates to pattern magnetic metal dot arrays”, Nanotechnology, 16, S324–9 (2005). [2-5]Y. Li, J. Sun, L. Wang, P. Zhan, Z. Cao, and Z. Wang, “Surface plasmon sensor with gold film deposited on a two-dimensional colloidal crystal”, Applied Physics A, 92(2), 291 (2008). [2-6]T.-Y. Tsai, T.-H. Chen, N.-H. Tai, S.-C. Chang, H.-C. Hsu, and T. J. Palathinkal, “The fabrication of a carbon nanotube array using a catalyst-poisoning layer in the inverse nano-sphere lithography method”, Nanotechnology, 20, 305303 (2009). [2-7]N. D. D. D. Velev, P. A. K. I. B. Ivanov, H. Yoshimura, and K. Nagayamat, “Mechanism of formation of two-dimensional crystals from latex particles on substrates”, Langmuir,8, 3183 (1992). [2-8]H. W. Deckman, and J. H. Dunsmuir, “Solid phase epitaxial recrystallization of thin polysilicon films amorphized by silicon ion implantation”, Appl. Phys. Lett.41,40377 (1982). [2-9]J. C. Hulteen, D. a. Treichel, M. T. Smith, M. L. Duval, T. R. Jensen, and R. P. Van Duyne, “Nanosphere lithography: size-tunable silver nanoparticle and surface cluster arrays”, The Journal of Physical Chemistry B, 103, 3854 (1999). [2-10]M. Retsch, Z. Zhou, S. Rivera, M. Kappl, X. S. Zhao, U. Jonas, and Q. Li, “Fabrication of large-area, transferable colloidal monolayers utilizing self-assembly at the Air/Water interface”. Macromolecular Chemistry and Physics, 210, 230 (2009). [2-11]N. D. D. D. Velev, P. A. K. I. B. Ivanov, H. Yoshimura, and K. Nagayamat, “Mechanism of formation of two-dimensional crystals from latex particles on substrates”, Langmuir ,(17), 3183 (1992). [2-12] R. Micheletto, H. Fukuda, and M. Ohtsut, “A simple method for the production of a two-dimensional”, Ordered Array of Small Latex Particles, Langmuir,11, 3333 (1999). [2-13]N. D. D. D. Velev, P. A. K. I. B. Ivanov, H. Yoshimura, and K. Nagayamat, “Mechanism of formation of two-dimensional crystals from latex particles on substrates”, langmuir , (17), 3183 (1992). [2-14]J. Rybczynski, U. Ebels, and M. Giersig, “Large-scale, 2D arrays of magnetic nanoparticles”, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 219, 1 (2003). [2-15]P. I. Stavroulakis, N. Christou, and D. Bagnall, “Improved deposition of large scale ordered nanosphere monolayers via liquid surface self-assembly”, Materials Science and Engineering: B, 165, 186 (2009). [2-16]A. S. Dimitrov, and K. Nagayama, “Continuous convective assembling of fine particles into two-dimensional arrays on solid surfaces”. Langmuir, 12, 1303 (1996). [2-17]M. H. Kim, S. H. Im, and O. O. Park, “Rapid fabrication of two- and three-dimensional colloidal crystal films via confined convective assembly”, Advanced Functional Materials, 15, 1329 (2005). [2-18]W. Li, W. Zhao, and P. Sun, “Fabrication of highly ordered metallic arrays and silicon pillars with controllable size using nanosphere lithography”, Physica E: Low-dimensional Systems and Nanostructures, 41, 1600 (2009). [2-19]A. Plettl, F. Enderle, M. Saitner, A. Manzke, C. Pfahler, S. Wiedemann, and P. Ziemann, “Non-close-packed crystals from self-assembled polystyrene spheres by isotropic plasma etching”: Adding Flexibility to Colloid Lithography. Advanced Functional Materials, 19, 3279 (2009). [2-20]C. Cong, W. C. Junus, Z. Shen, and T. Yu, “New colloidal lithographic nanopatterns fabricated by combining pre-heating and reactive ion etching”, Nanoscale research letters, 4, 1324 (2009). [2-21]B. Yan, Q. Zhu, W. B. Hu, W. K. Hsu, M. Terrones, N. Grobert, T. Karali, et al. “A simple route to silicon-based nanostructures”, Adv. Mater., 296, 844 (1999). [2-22]B. F. Marlow, M. D. Mcgehee, D. Zhao, B. F. Chmelka, and G. D. Stucky, “Doped mesoporous silica fibers : a new laser material”, Adv. Mater., 11, 632 (2002). [2-23]T. Stelzner, M. Pietsch, G. Andra, F. Falk, E. Ose, and S. Christiansen, “Silicon nanowire-based solar cells”, Nanotechnology, 19, 295203 (2008). [2-24]Y. Cui, Z. Zhong, D. Wang, W. U. Wang, and C. M. Lieber, “High performance silicon nanowire field effect transistors”, Nano Letters, 3, 149 (2003). [2-25]J. C. She, S. Z. Deng, N. S. Xu, R. H. Yao, and J. Chen, “Fabrication of vertically aligned Si nanowires and their application in a gated field emission device”, Applied Physics Letters, 88, 013112 (2006). [2-26]T. Hanrath, and B. a. Korgel, “Nucleation and growth of germanium nanowires seeded by organic monolayer-coated gold nanocrystals”, Journal of the American Chemical Society, 124, 1424 (2002). [2-27]R.-Q. Zhang, Y. Lifshitz, and S.-T. Lee, “Oxide-assisted growth of semiconducting nanowires”, Advanced Materials, 15, 635 (2003). [2-28]H. Search, C. Journals, A. Contact, M. Iopscience, and I. P. Address, “Aligned silica nanofibres”, J. Phys.: Condens. Matter 14, L473 (2002). [2-29]L. Dai, X. L. Chen, T. Zhou, B. Q. Hu, J. K. Jian, and W. J. Wang, “Strong blue photoluminescence from aligned silica nanofibers”, Applied Physics A: Materials Science and Processing, 76, 625 (2003). [2-30]R. S. Wagner, and W. C. Ellis, “Vapor-liquid-solid mechanism of single crystal growth”, Applied Physics Letters, 4, 89 (1964). [2-31]C. Ellis, “The vapor-liquid-solid mechanism of crystal growth” , 233(June) (1965). [2-32]H. F. Yan, Y. J. Xing, Z. H. Xi, and S. Q. Feng, “Growth of amorphous silicon nanowires via a solid – liquid – solid mechanism”, Chemical Physics Letters, 323,224 (2000). [2-33] H.-K. Park, B. Yang, S.-W. Kim, G.-H. Kim, D.-H. Youn, S.-H. Kim, and S.-L. Maeng, “Formation of silicon oxide nanowires directly from Au/Si and Pd–Au/Si substrates”, Physica E: Low-dimensional Systems and Nanostructures, 37, 158 (2007). [2-34]T. J. Trentler, K. M. Hickman, S. C. Goel, A. M. Viano, P. C. Gibbons, and W. E. Buhro, “Solution-liquid-solid growth of crystalline III-V semiconductors: an analogy to vapor-liquid-solid growth”, Science, 270, 1791 (1995). [2-35]X. Lu, D. D. Fanfair, K. P. Johnston, and B. a. Korgel, “High yield solution-liquid-solid synthesis of germanium nanowires”, Journal of the American Chemical Society, 127, 15718 (2005). [2-36]X. Lu, T. Hanrath, K. P. Johnston, and B. a. Korgel, “Growth of Single Crystal Silicon Nanowires in Supercritical Solution from Tethered Gold Particles on a Silicon Substrate”, Nano Letters, 3, 93 (2003). [2-37]T. Hanrath, and B. a. Korgel, “Nucleation and growth of germanium nanowires seeded by organic monolayer-coated gold nanocrystals”, Journal of the American Chemical Society, 124, 1424 (2002). [2-38]A. M. Morales, “A laser ablation method for the synthesis of crystalline semiconductor nanowires”, Science, 279, 208 (1998). [2-39]K. A. Jeon, J. H. Kim, and S. Y. Lee, “Simple method for synthesis of silicon nanowire: Pulsed laser deposition in furnace from p-Si wafer target”, Progress in Solid State Chemistry, 33, 107 (2005). [2-40]N. Fukata, T. Oshima, T. Tsurui, S. Ito, and K. Murakami, “Synthesis of silicon nanowires using laser ablation method and their manipulation by electron beam”, Science and Technology of Advanced Materials, 6, 628 (2005). [2-41]N. Wang, Y. Cai, and R. Q. Zhang, “Growth of nanowires”, Materials Science and Engineering: R: Reports, 60, 1 (2008). [2-42]Z. Zhang, X. H. Fan, L. Xu, C. S. Lee, and S. T. Lee, “Morphology and growth mechanism study of self-assembled silicon nanowires synthesized by thermal evaporation”, Chemical Physicsc Letters, 337, 18 (2001). [2-43]K. Peng, A. Lu, R. Zhang, and S.-T. Lee, “Motility of metal nanoparticles in silicon and induced anisotropic silicon etching”, Advanced Functional Materials, 18, 3026 (2008). [2-44]O. Fellahi, T. Hadjersi, M. Maamache, S. Bouanik, and A. Manseri, “Effect of temperature and silicon resistivity on the elaboration of silicon nanowires by electroless etching”, Applied Surface Science, 257, 591 (2010). [2-45]X. Li, and P. W. Bohn, “Metal-assisted chemical etching in HF/H2O2 produces porous silicon”, Applied Physics Letter, 77, 16 (2000). [2-46] K. Peng, Y. Yan, S. Gao, and J. Zhu, “Dendrite-assisted growth of silicon nanowires in electroless metal deposition”, Advanced Functional Materials, 13, 127 (2003). [2-47]P. J. Holmes, “The electrochemistry of semiconductors”, Academic press, 329, (1962). [2-48]H. C. Nathanson, R. N.Thomas, J. Guldberg, C. Nathanson, E. Bassous, F. Baran, F. Meeting, et al. “Anisotropic etching of silicon”, ED25, 1185 (1978). [2-49]J. C. Greenwood, “Ethylene diamine-catechol-water mixture shows preferential etching of p-n junction”, Journal of The Electrochemical Society, 116, 1325 (1969). [2-50]J. Jin-Young, G. Zhongyi, J. Sang-Won, U. Han-Don, P. Kwang-Tae, and L. Jung-Ho, “Optically improved solar cell using tapered silicon nano wires”, in Nanotechnology (IEEE-NANO), 10th IEEE Conference on, 2010, 1163 (2010). [2-51]A. Lauwers, P. Besser, T. Gutt, A. Satta, M. D. Potter, R. Lindsay, N. Roelandts, et al. “Comparative study of Ni-silicide and Co-silicide for sub 0.25-mm technologies”, Microelectronic Engineering,50, 103 (2000). [2-52]C. Detavernier, R. L. V. Meirhaeghe, F. Cardon, and K. Maex, “CoSi2 formation through SiO2”, Thin Solid Films 386. 19_26 (2001). [2-53]G. Palasantzas, “Roughness effects on the thermal stability of thin films”, Journal of Applied Physics, 81, 246 (1997). [2-54]F. Zhao, J. Zheng, , Z. Shen T. Osipowicz, W. Gao, and L. Chan, “Thermal stability study of NiSi and NiSi2 thin films”, Microelectronic Engineering, 71, 104 (2004). [2-55]S. P. Maruarka, “Silicide for VLSI Applications”, Academic Press, New York (1983). [2-56]Z. He, D. Smith, and P. Bennett, “Endotaxial Silicide Nanowires”, Physical Review Letters, 93, 1(2004). [2-57]P. a. Bennett, B. Ashcroft, Z. He, and R. M. Tromp, “Growth dynamics of titanium silicide nanowires observed with low-energy electron microscopy”, Journal of Vacuum Science and Technology B: Microelectronics and Nanometer Structures, 20, 2500 (2002). [2-58]H.-C. Hsu, W.-W. Wu, H.-F. Hsu, and L.-J. Chen, “Growth of high-density titanium silicide nanowires in a single direction on a silicon surface”, Nano Letters, 7, 885 (2007). [2-59]S. Y. Chen, and L. J. Chen, “Self-assembled epitaxial NiSi2 nanowires on Si(001) by reactive deposition epitaxy”, Thin Solid Films, 508, 222 (2006). [2-60]S. Y. Chen, and L. J.Chen, “Nitride-mediated epitaxy of self-assembled NiSi2 nanowires on (001)Si”, Applied Physics Letters, 87, 253111 (2005).
[4-1]J. Rybczynski, U. Ebels, and M. Giersig, "Large-scale, 2D arrays of magnetic nanoparticles." Colloids and Surfaces A: Physicochemical and Engineering Aspects, 219, 1 (2003). [4-2]P.I. Stavroulakis , N. Christou , and D. Bagnall, "Improved deposition of large scale ordered nanosphere monolayers via liquid surface self-assembly”, Materials Science and Engineering: B, 165, 186 (2009). [4-3]J. Yu, Q. Yan, and D. Shen, “Co-self-assembly of binary colloidal crystals at the air-water interface”, ACS applied materials and interfaces, 2, 1922 (2010). [4-4]Y. Xia, B. Gates, Y. Yin, and Y. Lu, "Monodispersed colloidal spheres: old materials with new applications”, Advanced Materials, 12, 693 (2000). [4-5]N. D. D. D. Velev, P. A. K. I. B. Ivanov, H. Yoshimura , and K. Nagayamat, “Mechanism of formation of two-dimensional crystals from latex particles on substrates”, Langmuir 1992,8,3183-3190 (1992). [4-6]A. Plettl, F. Enderle, M. Saitner, A. Manzke , C. Pfahler, S. Wiedemann, and P. Ziemann, "Non-close-packed crystals from self-assembled polystyrene spheres by isotropic plasma etching: adding flexibility to colloid lithography”, Advanced Functional Materials, 19, 3279 (2009). [4-7]J. M. Weisse, D. R. Kim, C. H. Lee , and X. Zheng, "Vertical transfer of uniform silicon nanowire arrays via crack formation”, Nano letters, 11, 1300 (2011). [4-8]M. H. Yun, V. A. Burrows, and M. N. Kozicki, "Analysis of KOH etching of (100) silicon on insulator for the fabrication of nanoscale tips”, J. Vac. Sci. Technol. B 16, 2844 (1998). [4-9]H. C. Nathanson, R. N. Thomas , J. Guldberg, C. Nathanson, E. Bassous, F. Baran, F. Meeting, et al. “Anisotropic etching of silicon”, ED25, 1185 (1978). [4-10]J. C. Greenwood, “Ethylene diamine-catechol-water mixture shows preferential etching of p-n junction”, Journal of The Electrochemical Society, 116, 1325 (1969). [4-11]R. H. Fowler , F.R.S and Dr. L. Nordheim, “Electron emission in intense electric field”, 5.173 (1928). [4-12]C. Chang , Y. Chang, C. Lee , P. Yeh, W. Lee, and L. Chen, “Ti5Si4 nanobats with excellent field emission properties”, J. Phys. Chem. C,113, 9153 (2009). [4-13]H. B. Michaelson, “The work function of the elements and its periodicity”, Journal of Applied Physics, 48, 4729 (1977). [4-14]W. M. Weber , L. Geelhaar, E. Unger, C. Cheze , F. Kreupl, H. Riechert, and P. Lugli, “Silicon to nickel-silicide axial nanowire heterostructures for high performance electronics”, Physica Status Solidi (B), 244, 4170 (2007). [4-15]A. Katsman, Y. Yaish, E. Rabkin, , and M. Beregovsky, “Surface diffusion controlled formation of nickel silicides in silicon nanowires”, Journal of Electronic Materials, 39, 365 (2010). [4-16]O. Nakatsuka , K. Okubo, Y. Tsuchiya, A. Sakai, S. Zaima, and Y. Yasuda, “Low-temperature formation of epitaxial NiSi 2 layers with solid-phase reaction in Ni/Ti/Si(001) systems”, Japanese Journal of Applied Physics, 44, 2945 (2005). [4-17]A. Vantomme, S. Degroote, J. Dekoster , G. Langouche, and R. Pretorius, “Concentration-controlled phase selection of silicide formation during reactive deposition”, Applied Physics Letters, 74, 3137 (1999). [4-18]C.-Y. Liu, W.-S. Li, L.-W. Chu, M.-Y. Lu, C.-J. Tsai, and L.-J. Chen, “An ordered Si nanowire with NiSi2 tip arrays as excellent field emitters”, Nanotechnology, 22, 055603 (2011). [4-19]C. H. Ji, W. A. Anderson , “Metal-induced grown Si nanostructures for large-area-device application”, IEEE, 50,1885 (2003). [4-20]C. Li, G. Fang, S. Sheng, Z. Chen, J. Wang, S. Ma,and X. Zhao, “Raman spectroscopy and field electron emission properties of aligned silicon nanowire arrays”, Physica E: Low-dimensional Systems and Nanostructures, 30, 169 (2005). [4-21]P. T. Joseph, N. H. Tai, Y. F. Cheng, C. Y. Lee, H. F. Cheng , and I. N. Lin, “Growth and electron field emission properties of ultrananocrystalline diamond on silicon nanostructures”, Diamond and Related Materials, 18, 169 (2009). [4-22]S.-C. Tseng, H.-L. Chen, C.-C. Yu, Y.-S. Lai, and H.-W. Liu, “Using intruded gold nanoclusters as highly active catalysts to fabricate silicon nanostalactite structures exhibiting excellent light trapping and field emission properties”, Energy and Environmental Science, 4, 5020 (2011).
|