|
[1]A. K. Geim, K. S. Novoselov, “The rise of graphene”, Nature materials 06 (2007) 183-191. [2]Z. S. Wu, S. Pei, “Field emission of single-layer graphene films prepared by electrophoretic deposition”, Advanced Materials 21 (2009)1756-1760. [3]R. Zou, G. He, “ZnO nanorods on reduced graphene sheets with excellent field emission, gas sensor and photocatalytic properties ”, Journal of Materials Chemistry A 1 (2013) 8445-8452. [4]J. J. Zeng, Y. J. Lin, “Electrical and optoelectronic properties of grapheme Schottky contact on Si-nanowire arrays with and without H2O2 treatment”, Applied Physics A 116 (2014) 581–587. [5]S. Bae, H. Kim, “Roll-to-roll production of 30-inch grapheme films for transparent electrodes”, Nature nanotechnology 05 (2010) 574–578. [6]K. S. Novoselov, A. K. Geim, “Electric field effect in atomically thin carbon films”, Science 306 (2004) 666-669. [7]C. Berger, Z. Song, “Electronic confinement and coherence in patterned epitaxial graphene”, Science 312 (2006) 1191–1196. [8]X. Li, W. Cai, “Large-area synthesis of high-quality and uniform graphene films on copper foils”, Science 324 (2009) 1312–1314. [9]W. S. Hummers, J. R. E. Offerman, “Preparation of graphitic oxide”, Journal of the American chemical society 80 (1958) 1339-1339. [10]S. Stankovich, D. A. Dikin, “Graphene-based composite materials”, Nature 442 (2006) 282–286. [11]K. S. Kim, Y. Zhao, “Large-scale pattern growth of grapheme films for stretchable transparent electrodes”, Nature 457 (2009) 706–710. [12]A. H. Castro Neto, F. Guinea, “The electronic properties of graphene”, Reviews of Modern Physics 81 (2009) 109. [13]K. A. Ritter, J. W. Lyding, “The influence of edge structure on the electronic properties of graphene quantum dots and nanoribbons”, Nature 8 (2009) 235–242. [14]S. Park, R. S. Ruoff, “Chemical methods for the production of graphenes”, Nature nanotechnology 04 (2009)217-224. [15]S. Pei, H. M. Cheng, “The reduction of grapheme oxide”, Carbon 50 (2012) 3210-3228. [16]K. V. Emtsev, F. Speck, “Interaction, growth, and ordering of epitaxial graphene on SiC {0001} surfaces: A comparative photoelectron spectroscopy study”, Physical Review B 77 (2008) 155303. [17]C. Berger, Z. Song, “Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics”, The Journal of Physical Chemistry B 108 (2004) 19912-19916. [18]K. V. Emtsev, A. Bostwick, “Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide”, Nature 8 (2009) 203-207. [19]W. A. Heer, C. Berger, “Epitaxial graphene”, Solid State Communications 143 (2007) 92-100. [20]J. Hass, F. Varchon, “Why multilayer graphene on 4H-SiC (0001 ̅)”, Physical Review Letters 100 (2008) 122504. [21]C. Riedl, C. Coletti, “Quasi-free-standing epitaxial graphene on SiC obtained by hydrogen intercalation”, Physical Review Letters 103 (2009) 246804. [22] A. Reina, X. Jia, “Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition”, Nano Letters 9 (2009) 30-35. [23] D. Wei, Y. Liu, “Synthesis of N-doped graphene by chemical vapor deposition and its electrical properties”, Nano Letters 9 (2009) 1752-1758. [24]A. M. Morales, C. M. Lieber, “A laser ablation method for the synthesis of crystalline semiconductor nanowires”, Science 279 (1998) 208-211. [25]K. A. Jeon, J. H. Kim, “Simple method for synthesis of silicon nanowire: Pulsed laser deposition in furnace from p-Si wafer target”, Solid State Chemistry 33 (2005) 107-112. [26]N. Fukata, T. Oshima, “Synthesis of silicon nanowires using laser ablation method and their manipulation by electron beam”, Science and Technology of Advanced Materials 6 (2005) 628–632. [27]N. Wang, Y. Cai, “Growth of Nanowires”, Materials Science and Engineering R 60 (2008) 1-51. [28]L. Schubert, P. Wemer, “Silicon nanowhiskers grown on <111> Si substrates by molecular-beam epitaxy”, Applied Physical Letters 84 (2004) 4968–4870. [29]Y. Q. Fu, A. Colli, “Deep reactive ion etching as a tool for nanostructure fabrication”, Journal of Vacuum Science and Technology B 27 (2009) 1520–1526. [30]C. L. Cheung, R. J. Nikolic, “Fabrication of nanopillars by nanosphere lithography”, Nanotechnology 17 (2006) 1339-1343. [31]X. Li, P. W. Bohn, “Metal-assisted chemical etching in HF/H2O2 produces porous silicon”, Applied Physical Letters 77 (2000) 2572-2574. [32]P. Sharma, Y. L. Wang, “Directional etching of silicon by silver nanostructures”, Applied Physical Express 4 (2011) 025001. [33]Z. Huang, H. Fang, “Fabrication of silicon nanowire arrays with controlled diameter, length, and density”, Advanced Materials 19 (2007) 744-748. [34]J. Yeom, D. Ratchford, “Decoupling diameter and pitch in silicon nanowire arrays made by metal-assisted chemical etching”, Advanced Functional Materials 24 (2014) 106-116. [35]H. Fang, Y. Wu, “Silver catalysis in the fabrication of silicon nanowire arrays”, Nanotechnology 17 (2006) 3768-3774. [36]Y. H. Ng, A. Iwase, “Reducing graphene oxide on a visible-light BiVO4 photocatalyst for an enhanced photoelectrochemical water splitting”, The journal of Physical Chemistry Letters 1 (2010) 2607-2612. [37]G. Williams, P. V. Kamat, “Graphene-semiconductor nanocomposites: excited-state interactions between ZnO nanoparticles and graphene oxide”, Langmuir 24 (2009) 13869–13873. [38]O. Fellahi, M. R. Das, “Silicon nanowire arrays-induced graphene oxide reduction under UV irradiation”, Nanoscale 3 (2011) 4662-4669. [39]D. Li, M. B. Müller, “Processable aqueous dispersions of graphene nanosheets”, Nature nanotechnology 3 (2008) 101-105. [40]Y. Qu, X. Zhong, “Photocatalytic properties of porous silicon nanowires”, Journal of Materials Chemistry 20 (2010) 3590-3594. [41]N. Brahiti, T. Hadjersi, “Enhanced photocatalytic degradation of methylene blue by metal-modified silicon nanowires”, Materials Research Bulletin 62 (2015) 30-36. [42]M. Shao, Liang Cheng, “Excellent photocatalysis of HF-treated silicon nanowires”, Journal of the American Chemical Society 131 (2009) 17738-17739. [43]F. Y. Wang, Q. D. Yang, “Highly active and enhanced photocatalytic silicon nanowire arrays”, Nanoscale 3 (2011) 3269-3276. [44]A. C. Ferrari, J. C. Meyer, “Raman spectrum of graphene and graphene layers”, Physical Review Letters 97 (2006) 187401. [45]S. Stankovich, D. A. Dikin, “Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide”, Carbon 45 (2007) 1558-1565. [46]D. R. Dreyer, S. Park, “The chemistry of graphene oxide”, Chemical Society Reviews 39 (2010) 228-240. [47]G. Wang, J. Yang, “Facile synthesis and characterization of graphene nanosheets”, The Journal of Physical Chemistry C 112 (2008) 8192-8195. [48]D. Yang, A. Velamakanni, “Chemical analysis of graphene oxide films after heat and chemical treatments by X-ray photoelectron and Micro-Raman spectroscopy”, Carbon 47 (2009) 145-152. [49]O. V. Yazyev, L. Helm, “Defect-induced magnetism in graphene”, Physical Review B 75 (2007) 125408. [50]K. Nomura, A. H. MacDonald, “Quantum Hall ferromagnetism”, Physical Review Letters 96 (2006) 256602. [51]J. Zhou, Q. Wang, “Ferromagnetism in semihydrogenated graphene sheet”, Nano Letters 9 (2009) 3868-3870. [52]Y. W. Son, M. L. Cohen, “Half-metallic graphene nanoribbons”, Nature 444 (2006) 347-349.
|