跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.136) 您好!臺灣時間:2025/09/20 02:52
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:王裕鴻
研究生(外文):Yu-Hung Wang
論文名稱:以矽奈米線陣列光催化還原氧化石墨烯成長石墨烯薄膜
論文名稱(外文):Fabrication of Graphene Films by Photocatalysis of Graphene Oxide Reduction Reaction on Silicon Nanowire Arrays
指導教授:許薰丰
口試委員:吳宗明鄭紹良
口試日期:2017-07-26
學位類別:碩士
校院名稱:國立中興大學
系所名稱:材料科學與工程學系所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:65
中文關鍵詞:氧化石墨烯石墨烯奈米線光觸媒
外文關鍵詞:Graphene oxideGrapheneNanowirePhotocatalyst
相關次數:
  • 被引用被引用:3
  • 點閱點閱:171
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
近年成長石墨烯的研究中,大多都是利用化學氣相沉積法(chemical vapor deposition, CVD),而利用氧化石墨烯的還原來製作整層石墨烯的透明導電膜目前為止相當稀少。雖然仍有一些學者也利用化學方法或是其他方法來還原石墨烯且製成石墨烯懸浮液,但化學溶液不僅危險且容易汙染環境,而在氧化石墨烯還原石墨烯的研究中,使用矽奈米線光觸媒特性還原氧化石墨烯的研究,亦極為少見。石墨烯在導電性方面有比銀還低的電阻率以及相當良好的導熱率,相信會是繼奈米碳管之後相當熱門且有具有應用性的材料。
本實驗先以金屬輔助化學蝕刻法成長出矽奈米線陣列,再將氧化石墨烯粉末與矽奈米線陣列放入水中,之後以光源照射還原石墨烯。以X射線光電子光譜(X-ray photoelectron spectroscopy, XPS)測量其含氧官能基去除程度,確認其碳-氧單鍵及碳-氧雙鍵的峰值皆顯著下降,證實氧化石墨烯確實被還原。
不同的奈米線形貌、光催化時間、氧化石墨烯濃度,還原在矽奈米線陣列上的石墨烯面積及厚度也會有所不同。其中以銀厚度24 nm製成的矽奈米線陣列,在0.1 mg/ml之濃度進行4hr光催化還原可以得到面積最大(披覆率達88 %)、最薄(4 nm)且連續之石墨烯薄膜。藉由霍爾量測經由矽奈米線光催化還原的石墨烯,片電阻僅1.49×103 Ω/□,而藉由乾式二次轉印法,可將石墨烯從矽奈米線陣列上轉印至不同基板並得到更薄的石墨烯結構,經量測得到片電阻為8.8×109 Ω/□,其穿透率高達99 %。
Graphene has attracted much attention because it has lower resistivity and larger thermal conductivity comparing with silver and diamond. In general, the formation of graphene is using chemical vapor deposition method. Several researches reported that graphene layer can be formed by the chemical reduction of graphene oxide (GO). However, the chemical reduction method will cause environment pollution.
In this study, the graphene films were fabricated by photocatalytic reduction of GO. Silicon-nanowire-array photocatalysts formed by metal-assisted chemical etching were immersed into the solution of GO in water and photocatalytic reduction process carried out under white light irradiation.
The results show that large area and continuous graphene films were formed on the top of silicon nanowire arrays by photocatalytic reduction of GO. The coverage area and thickness of graphene depended on the morphology of silicon nanowire array, irradiation time and the concentration of GO solution. A graphene film with about 4 nm in thickness and a coverage rate of 88% was achieved using silicon nanowire array formed by 24 nm Ag film-assisted chemical etching, the irradiation time of 4 hours and the GO solution concertration of 0.1 mg/ml. The sheet resistance was 1.49×103 Ω/□. The ferromagnetism property at room temperature was observed. The graphene films can be transferred from the silicon-nanowire-array photocatalysts to the target substrates using thermal release tapes.
摘要 i
Abstract ii
表目錄 v
圖目錄 vi
第一章前言 1
第二章文獻回顧 3
2-1石墨烯簡介 3
2-1-1石墨烯的結構 3
2-1-2石墨烯的特性 3
2-2石墨烯的製備 4
2-2-1機械剝離法(mechanical exfoliation) 4
2-2-2碳化矽表面外延生長法(epitaxial growth) 4
2-2-3化學氣相沉積法(CVD) 5
2-2-4氧化減薄石墨片法(Reduction from Graphene Oxides) 5
2-3石墨烯轉印 5
2-3-1濕式轉印 5
2-3-2乾式轉印 6
2-4矽奈米線(Silicon nanowire) 6
2-4-1 矽奈米線的製備方式 7
2-4-2由下而上法 7
2-4-3由上而下法 8
2-5光催化反應 9
2-6 氧化石墨烯還原石墨烯測定方法 11
2-6-1 拉曼分析 11
2-6-2化學分析電子能譜儀(XPS)分析 12
2-6-3 TEM分析 12
2-7 研究動機 12
第三章實驗方法 14
3-1實驗步驟 14
3-2 矽奈米線製備 14
3-2-1矽基板前處理 14
3-2-2 銀金屬濺鍍 14
3-2-3 化學溶液蝕刻 15
3-3氧化石墨烯溶液製備 15
3-4氧化石墨烯還原 15
3-5石墨烯轉印 15
3-5-1濕式轉印 15
3-5-2乾式轉印 16
3-6石墨烯分析實驗 17
3-6-1 TEM分析 17
3-6-2化學分析電子能譜儀分析 17
3-6-3拉曼分析 17
3-7 分析儀器 17
3-7-1 冷場發射掃描式電子顯微鏡 17
3-7-2 化學分析電子能譜儀(Electron Spectroscope for Chemical Analysis) 18
3-7-3原子力顯微鏡(Scanning Probe Microscope System,AFM) 18
3-7-4 FIB 18
3-7-5拉曼 18
3-7-6寬頻白光光源產生器 18
3-7-7光學顯微鏡(Optical Microscopy) 18
3-7-8霍爾效應分析量測(Hall Effect Analyzer) 19
3-7-9紫外光-可見光分光光譜儀(UV-Vis spectroscopy) 19
3-7-10超導磁性測量系統(Superconducting Quantum Interference Device Magnetometer) 19
第四章結果與討論 20
4-1 矽奈米線陣列製備 20
4-2以矽奈米線陣列光催化反應成長石墨烯薄膜 20
4-2-1不同基材的影響 20
4-2-2 時間對光催化成長石墨烯薄膜的影響 21
4-2-3 氧化石墨烯水溶液濃度的影響 22
4-3連續大面積石墨烯薄膜特性分析 22
4-3-1 XPS分析 22
4-3-2 TEM分析 23
4-3-3 霍爾電性分析 23
4-3-4 超導量子磁性分析 24
4-4 石墨烯濕式轉印 24
4-5乾式轉印石墨烯 24
第五章結論 26
第六章參考文獻 61
[1]A. K. Geim, K. S. Novoselov, “The rise of graphene”, Nature materials 06 (2007) 183-191.
[2]Z. S. Wu, S. Pei, “Field emission of single-layer graphene films prepared by electrophoretic deposition”, Advanced Materials 21 (2009)1756-1760.
[3]R. Zou, G. He, “ZnO nanorods on reduced graphene sheets with excellent field emission, gas sensor and photocatalytic properties ”, Journal of Materials Chemistry A 1 (2013) 8445-8452.
[4]J. J. Zeng, Y. J. Lin, “Electrical and optoelectronic properties of grapheme Schottky contact on Si-nanowire arrays with and without H2O2 treatment”, Applied Physics A 116 (2014) 581–587.
[5]S. Bae, H. Kim, “Roll-to-roll production of 30-inch grapheme films for transparent electrodes”, Nature nanotechnology 05 (2010) 574–578.
[6]K. S. Novoselov, A. K. Geim, “Electric field effect in atomically thin carbon films”, Science 306 (2004) 666-669.
[7]C. Berger, Z. Song, “Electronic confinement and coherence in patterned epitaxial graphene”, Science 312 (2006) 1191–1196.
[8]X. Li, W. Cai, “Large-area synthesis of high-quality and uniform graphene films on copper foils”, Science 324 (2009) 1312–1314.
[9]W. S. Hummers, J. R. E. Offerman, “Preparation of graphitic oxide”, Journal of the American chemical society 80 (1958) 1339-1339.
[10]S. Stankovich, D. A. Dikin, “Graphene-based composite materials”, Nature 442 (2006) 282–286.
[11]K. S. Kim, Y. Zhao, “Large-scale pattern growth of grapheme films for stretchable transparent electrodes”, Nature 457 (2009) 706–710.
[12]A. H. Castro Neto, F. Guinea, “The electronic properties of graphene”, Reviews of Modern Physics 81 (2009) 109.
[13]K. A. Ritter, J. W. Lyding, “The influence of edge structure on the electronic properties of graphene quantum dots and nanoribbons”, Nature 8 (2009) 235–242.
[14]S. Park, R. S. Ruoff, “Chemical methods for the production of graphenes”, Nature nanotechnology 04 (2009)217-224.
[15]S. Pei, H. M. Cheng, “The reduction of grapheme oxide”, Carbon 50 (2012) 3210-3228.
[16]K. V. Emtsev, F. Speck, “Interaction, growth, and ordering of epitaxial graphene on SiC {0001} surfaces: A comparative photoelectron spectroscopy study”, Physical Review B 77 (2008) 155303.
[17]C. Berger, Z. Song, “Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics”, The Journal of Physical Chemistry B 108 (2004) 19912-19916.
[18]K. V. Emtsev, A. Bostwick, “Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide”, Nature 8 (2009) 203-207.
[19]W. A. Heer, C. Berger, “Epitaxial graphene”, Solid State Communications 143 (2007) 92-100.
[20]J. Hass, F. Varchon, “Why multilayer graphene on 4H-SiC (0001 ̅)”, Physical Review Letters 100 (2008) 122504.
[21]C. Riedl, C. Coletti, “Quasi-free-standing epitaxial graphene on SiC obtained by hydrogen intercalation”, Physical Review Letters 103 (2009) 246804.
[22] A. Reina, X. Jia, “Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition”, Nano Letters 9 (2009) 30-35.
[23] D. Wei, Y. Liu, “Synthesis of N-doped graphene by chemical vapor deposition and its electrical properties”, Nano Letters 9 (2009) 1752-1758.
[24]A. M. Morales, C. M. Lieber, “A laser ablation method for the synthesis of crystalline semiconductor nanowires”, Science 279 (1998) 208-211.
[25]K. A. Jeon, J. H. Kim, “Simple method for synthesis of silicon nanowire: Pulsed laser deposition in furnace from p-Si wafer target”, Solid State Chemistry 33 (2005) 107-112.
[26]N. Fukata, T. Oshima, “Synthesis of silicon nanowires using laser ablation method and their manipulation by electron beam”, Science and Technology of Advanced Materials 6 (2005) 628–632.
[27]N. Wang, Y. Cai, “Growth of Nanowires”, Materials Science and Engineering R 60 (2008) 1-51.
[28]L. Schubert, P. Wemer, “Silicon nanowhiskers grown on <111> Si substrates by molecular-beam epitaxy”, Applied Physical Letters 84 (2004) 4968–4870.
[29]Y. Q. Fu, A. Colli, “Deep reactive ion etching as a tool for nanostructure fabrication”, Journal of Vacuum Science and Technology B 27 (2009) 1520–1526.
[30]C. L. Cheung, R. J. Nikolic, “Fabrication of nanopillars by nanosphere lithography”, Nanotechnology 17 (2006) 1339-1343.
[31]X. Li, P. W. Bohn, “Metal-assisted chemical etching in HF/H2O2 produces porous silicon”, Applied Physical Letters 77 (2000) 2572-2574.
[32]P. Sharma, Y. L. Wang, “Directional etching of silicon by silver nanostructures”, Applied Physical Express 4 (2011) 025001.
[33]Z. Huang, H. Fang, “Fabrication of silicon nanowire arrays with controlled diameter, length, and density”, Advanced Materials 19 (2007) 744-748.
[34]J. Yeom, D. Ratchford, “Decoupling diameter and pitch in silicon nanowire arrays made by metal-assisted chemical etching”, Advanced Functional Materials 24 (2014) 106-116.
[35]H. Fang, Y. Wu, “Silver catalysis in the fabrication of silicon nanowire arrays”, Nanotechnology 17 (2006) 3768-3774.
[36]Y. H. Ng, A. Iwase, “Reducing graphene oxide on a visible-light BiVO4 photocatalyst for an enhanced photoelectrochemical water splitting”, The journal of Physical Chemistry Letters 1 (2010) 2607-2612.
[37]G. Williams, P. V. Kamat, “Graphene-semiconductor nanocomposites: excited-state interactions between ZnO nanoparticles and graphene oxide”, Langmuir 24 (2009) 13869–13873.
[38]O. Fellahi, M. R. Das, “Silicon nanowire arrays-induced graphene oxide reduction under UV irradiation”, Nanoscale 3 (2011) 4662-4669.
[39]D. Li, M. B. Müller, “Processable aqueous dispersions of graphene nanosheets”, Nature nanotechnology 3 (2008) 101-105.
[40]Y. Qu, X. Zhong, “Photocatalytic properties of porous silicon nanowires”, Journal of Materials Chemistry 20 (2010) 3590-3594.
[41]N. Brahiti, T. Hadjersi, “Enhanced photocatalytic degradation of methylene blue by metal-modified silicon nanowires”, Materials Research Bulletin 62 (2015) 30-36.
[42]M. Shao, Liang Cheng, “Excellent photocatalysis of HF-treated silicon nanowires”, Journal of the American Chemical Society 131 (2009) 17738-17739.
[43]F. Y. Wang, Q. D. Yang, “Highly active and enhanced photocatalytic silicon nanowire arrays”, Nanoscale 3 (2011) 3269-3276.
[44]A. C. Ferrari, J. C. Meyer, “Raman spectrum of graphene and graphene layers”, Physical Review Letters 97 (2006) 187401.
[45]S. Stankovich, D. A. Dikin, “Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide”, Carbon 45 (2007) 1558-1565.
[46]D. R. Dreyer, S. Park, “The chemistry of graphene oxide”, Chemical Society Reviews 39 (2010) 228-240.
[47]G. Wang, J. Yang, “Facile synthesis and characterization of graphene nanosheets”, The Journal of Physical Chemistry C 112 (2008) 8192-8195.
[48]D. Yang, A. Velamakanni, “Chemical analysis of graphene oxide films after heat and chemical treatments by X-ray photoelectron and Micro-Raman spectroscopy”, Carbon 47 (2009) 145-152.
[49]O. V. Yazyev, L. Helm, “Defect-induced magnetism in graphene”, Physical Review B 75 (2007) 125408.
[50]K. Nomura, A. H. MacDonald, “Quantum Hall ferromagnetism”, Physical Review Letters 96 (2006) 256602.
[51]J. Zhou, Q. Wang, “Ferromagnetism in semihydrogenated graphene sheet”, Nano Letters 9 (2009) 3868-3870.
[52]Y. W. Son, M. L. Cohen, “Half-metallic graphene nanoribbons”, Nature 444 (2006) 347-349.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊