跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.11) 您好!臺灣時間:2025/09/24 01:26
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:許睿穎
研究生(外文):Jui-Ying Hsu
論文名稱:熱應力誘發藍寶石基底上單晶矽薄膜轉移之研究
論文名稱(外文):Study of thermal stress-induced layer transfer from single-crystal silicon thin film on sapphire substrate
指導教授:李天錫李天錫引用關係
指導教授(外文):Tien-Hsi Lee
學位類別:碩士
校院名稱:國立中央大學
系所名稱:機械工程研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:68
中文關鍵詞:藍寶石上矽熱應力熱應力誘導轉移法智切法含氫離子化學溶液共晶鍵合藍寶石薄膜轉移晶圓鍵合薄膜熱應力鋁-矽共晶
外文關鍵詞:thin film thermal stresswafer bondingsapphiresilicon on sapphirelayer transfereutectic bondingthermal stressSmart-CutSLiM-Cutchemical solution containing hydrogen ionsthe Al - Si eutectic
相關次數:
  • 被引用被引用:0
  • 點閱點閱:310
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
  藍寶石基底上矽(Silicon on Sapphire;SOS)有良好的藍寶石來作為矽磊晶層之基底,能磊晶出良好的矽晶品質,故能應用於光電、通訊、半導體、太陽能面板等薄膜上。現今最常見的矽薄膜轉移技術為Smart-cut®,是利用高劑量高能量的氫離子佈植在欲轉移深度之矽晶層中,再以高溫退火使得氫離子濃度高峰之位置產生剝離,達成矽晶薄膜轉移的目的,但Smart-cut®之技術設備高價昂貴;近四年來比利時的校際微電子研究中心 (Interuniversity Microelectronics Centre;IMEC)發展出SLiM-Cut技術(Stress induced Lift-off Method),利用矽晶材料特性的熔點高與熱膨脹係數小,金屬材料熔點低與熱膨脹係數高的原理進行薄膜轉移。

  本研究想法即是利用兩材料熱膨脹係數不同的原理進行研究:先將SOS表面經過化學溶液處理浸泡後,將金屬鋁材加熱使之鍵合於矽材上,令材料冷卻時因膨脹係數不同產生熱應力,致使矽材與藍寶石剝離,使矽晶薄膜轉移到金屬鋁材上,並使用OM、SEM、EDS與SIMS等儀器檢測並探討其結構,轉移後之矽晶薄膜可以應用於太陽能面板等相關產業上,而藍寶石又可以再次磊晶利用。
  Silicon on sapphire can be applied to Optical Engineering, communications, semiconductor, and thin film solar cell, because good sapphire for the substrate can epitaxial high quality silicon layer. The most well-known silicon film layer transfer technique is the Smart-cut®. It works by implanting high dose hydrogen ion in the desired depth of the silicon layer, and annealed at high temperature for separation in the location of the peak of the hydrogen. Then the silicon film transfers to another wafer. The past four years in Belgium, Interuniversity Microelectronics Centre (IMEC) developed a new technique called Slim-Cut. Silicon is high melting point and small thermal expansion coefficient. Metal is low melting point and large thermal expansion coefficient. These are the principles for Slim-Cut research layer transfer.

  This study uses this principle that two kinds of materials’ thermal expansion coefficient are different. Silicon on sapphire has been soaked in chemical solution. Metal aluminum can bond on the silicon material by heating. When cooling, they produce thermal stress by two different expansion coefficients. Then silicon layer on sapphire transfers to the metal aluminum. This study uses OM, SEM, EDS, and SIMS to test the structures, and discuss these results. We wish the study’s material silicon thin film solar panels can be applied to related industries. The sapphire without silicon is recycled and epitaxial for using again.
摘要...........................................................I
Abstract......................................................II
致謝..........................................................IV
目錄...........................................................V
圖目錄......................................................VIII
表目錄........................................................XI
符號說明.....................................................XII

第一章 緒論....................................................1
 1.1研究背景..................................................1
 1.2研究動機與目的............................................4
第二章 文獻回顧................................................8
 2.1藍寶石基底上矽晶之觀瞻....................................8
  2.1.1藍寶石基板............................................8
  2.1.2藍寶石基底上矽晶層....................................9
 2.2單晶薄膜轉移技術.........................................10
  2.2.1晶圓鍵合.............................................10
   2.2.1.1共晶鍵合法(Eutectic Bonding)......................11
   2.2.1.2 鋁-矽二元相圖...................................11
  2.2.2薄膜轉移.............................................11
   2.2.2.1智切法(Smart-Cut®)...............................12
   2.2.2.2 ELTRAN...........................................12
   2.2.2.3 SLiM-Cut.........................................13
 2.3薄膜應力.................................................13
  2.3.1薄膜熱應力...........................................14
  2.3.2 矽與鋁之膨脹係數....................................15
第三章 實驗準備與研究流程.....................................23
 3.1實驗試片準備.............................................23
 3.2研究步驟流程.............................................25
 3.3實驗器材與檢測儀器.......................................26
第四章 結果與討論.............................................35
 4.1高溫退火溫度控制對鋁材與SOS之矽晶層共晶鍵合..............35
 4.2熱應力使用鋁材與SOS之矽晶層薄膜轉移......................37
  4.2.1浸泡化學溶液對於鋁材與SOS之矽晶層薄膜轉移之影響......37
  4.2.2冷卻速率控制對於鋁材與SOS之矽晶層薄膜轉移之影響......38
 4.3熱應力誘發藍寶石上矽晶層薄膜分析結果與探討...............40
  4.3.1浸泡化學溶液加強鋁材與SOS矽晶層薄膜轉移分析與探討....40
  4.3.2 SOS上矽晶層轉移後之Si/Al檢測結果分析與討論..........41
第五章 結論與未來展望.........................................62
 5.1結論.....................................................62
 5.2未來展望.................................................63
參考文獻......................................................65
【1】Jack St. Clair Kilby, “Turning Potential into Realities: The Invention of the Integrated Circuit (Nobel Lecture)”, WILEY-VCH-Verlag GmbH, Vol. 2, Issue: 8-9, pp. 482–489, 2001.
【2】P.K. Bondyopadhyay, “Moore''s law governs the silicon revolution”, IEEE, Vol. 86, Issue: 1, pp. 78-81, 1998.
【3】Ibrahim Ban et al., “Integration of Back-Gate Doping for 15-nm Node Floating Body Cell (FBC) Memory”, IEEE, VLSI Technology (VLSIT), 2010 Symposium on, pp. 159-160, June 2010.
【4】莊達人,VLSI製造技術,五版,高立圖書有限公司,臺北縣,民國九十一年。
【5】G. K. Celler and S. Cristoloveanu, “Frontiers of Silicon-on-Insulator”, Journal of Applied Physics, Vol. 93, Issue 9, pp. 4955-4978, May 2003.
【6】J. B. Kuo and K.-W. Su, CMOS VLSI Engineering: Silicon-on-Insulator (SOI), Kluwer Academic Publishers, Boston, 1998.
【7】J.-P. Colinge, Silicon-on-Insulator Technology: Materials to VLSI, 3rd Edition, Springer Science+Business Media, Inc., New York, 2004.
【8】M. Bruel, “Silicon on insulator material technology”. Electronics Letters, Vol. 31, Issue 14, pp. 1201-1202, Jul 1995.
【9】J. B. Lasky, et al., “Silicon-on-Insulator (SOI) by Bonding and Etch-Back”, Electron Devices Meeting, 1985 International, Vol. 31, pp. 684-687, 1985.
【10】Q.-Y. Tong and U. Gösele, Semiconductor Wafer Bonding: Science and Technology, John Wiley&Sons, Inc., New York, 1999.
【11】T Yonehara & Kiyofumi Sakaguchi., “ELTRAN®; Novel SOI Wafer Technology”, JSAP International, No.4, pp10-16, 2001.

【12】T.-H. Lee, “Semiconductor thin film transfer by wafer bonding and advanced ion implantation layer splitting technologies”, Duke University, Ph.D. Dissertation, 1998.
【13】A. Uhir, “Electrolytic shapping of germanium and silicon”, Bell System Tech. J., Vol. 35, pp. 333, 1956.
【14】F. Dross et al., “Stress-induced large-area lift-off of crystalline Si films”, Applied Physics A – Materials Science & Processing, Vol. 89, Num. 1,pp 149-152, 2007.
【15】Jan Vaes et al., “SLiM-Cut thin silicon wafering with enhanced crack and stress control” proceedings of the SPIE, proceedings Vol. 7772, 2010.
【16】Ken Fujita et. al., “Development of Radio Frequency Circuit Using Silicon-on-Sapphire (SOS) Technology”, Oki Technical Review, Issue 203, Vol. 72 No. 3, 2005.
【17】張育嘉,「圖形化藍寶石基板應用於氮化鎵發光二極體之研究」,國立中央大學,光電科學研究所,碩士論文,民國九十七年。
【18】H. M. Manasevit and W. I. Simpson, “Single-Crystal Silicon on a Sapphire Substrate”, Journal of Applied. Physics, Vol. 35, pp 1349-1351, 1964.
【19】Rapp, A.K. and Ross, E.C.”, Silicon-on-Sapphire Substrates Overcome MOS Limitations”, Electronics, pp 113, September 25, 1972.
【20】Toshiyuki Nakamura et al. “Silicon on Sapphire (SOS) Device Technology”, Oki Technical Review, Issue 200 Vol. 71 No. 4, 2004.
【21】Kouichi Murakami et al. “Explosive Crystallization Starting from an Amorphous-Silicon Surface Region during Long Pulse Laser Irradiation”, Physical review letters, Vol. 59, No.19, 1987.
【22】S. S. Lau, et al, “Improvement of Crystalline Quality of Epitaxial Si Layers by Ion-Implantation Techniques”, Applied Physics Letters, Vol. 34, Issue 1, January, 1979.

【23】Hoon Young Cho and Chan Jin Park, “Hydrogenation effect on silicon on sapphire grown by rapid thermal chemical vapor deposition”, Physica E, Vol. 16, Issue: 3-4, pp 489-494, 2003
【24】Y. T. Cheng, et al., “Localized Silicon Fusion and Eutectic Bonding for MEMS Fabrication and Packaging”, Journal of Microelectromechanical Systems, Vol. 9, No. 1, Mar. 2000.
【25】D. Sparks1, et al., “Wafer-to-wafer bonding of nonplanarized MEMS surfaces using solder”, J. Micromech. Microeng., 11, 630,(2001).
【26】J. L. Murray and A. J. McAIister, “The AI-Si (Aluminum-Silicon) System”, Bulletin of Alloy Phase Diagrams, Vol. 5, No. 1, 1984.
【27】B. Aspar et al., “Basic mechanisms involved in the Smart-Cut® process” Microelectronic Engineering, Vol. 36, pp 233-240, 1997
【28】Christophe Maleville and Carlos Mazure, “Smart-Cut_ technology: from 300 mm ultrathin SOI production to advanced engineered substrates”, Solid-State Electronics, Vol. 48, pp 1055–1063, 2004
【29】Auberton-Herve, A.J., “SOI: materials to systems”, Electron Devices Meeting, 1996., International, pp 3-10 , Dec. 1996.
【30】M. Ito et al., “Scalability potential in ELTRAN®SOI-epi wafer” SOI Conference, 2000 IEEE International, pp 10-11 , 2000.
【31】I. Gordon et al., “Three novel ways of making thin-film crystalline-silicon layers on glass for solar cell applications”, Sol. Energy Mater. Sol. Cells, doi:10.1016/j.solmat.2010.11.031, 2010.
【32】林家慶,「異質材料(石英/矽)晶圓鍵合之薄膜應力模擬與研究」,國立中央大學,機械工程學系機電整合產業研發碩士專班,碩士論文,民國九十七年。
【33】John A. Thornton and D.W. Hoffman, “Stress-related effects in thin films”, Thin Solid Films, Vol. 171, Issue 1, pp 5-31, 1 April 1989.
【34】田春林,「光學薄膜應力與熱膨脹係數量測之研究」,國立中央大學,光電科學研究所,博士論文,民國八十九年。
【35】網路資料on line resources︰MatWeb:Material Property Data ,2010年11月20日,取自 http://www.matweb.com/
【36】小川洋輝,崛池靖浩著,半導體潔淨技術,顏誠廷譯,普林斯頓國際有限公司,臺北縣,民國九十二年。
【37】A. Saad et al., “Modeling of hydrogen diffusion in silicon crystals”, Nucl. Instr. and Meth. in Phys. Res., B 253, pp 118–121, 2006.
【38】A.Y. Usenko, and W.N. Carr, “Hydrogenation of Trap Layer as an SOI Process Step”, 2000 IEEE International SOI Conference, Oct. 2000
【39】William D. Callister, Materials Science and Engineering: An Introduction, John Wiley & Sons (Asia) Pte Ltd, 7th Edition, 2007.
【40】F. Dross et al., “Stress-induced lift-off of method for kerf-loss-free wafering of ultra-thin(~50μm) crystalline Si wafers”, IEEE, 978-1-4244-1641-7, 2008.
【41】林政諭,「熱應力誘發藍寶石基底上矽層轉移之研究」,國立中央大學,機械工程學系,碩士論文,民國九十九年。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top