|
Adomavicius, G., & Tuzhilin, A. (2005). Toward the Next Generation of Recommender Systems: A Survey of the State-of-the-Art and Possible Extensions. Institute of Electrical and Electronics Engineers Transactions on Knowledge and Data Engineering, 17(6), 734-749. Ardissono, L., Goy, A., Petrone, G., Segnan, M., & Torasso, P. (2003). Intrigue: Personalized Recommendation of Tourist Attractions for Desktop and Handset Devices. Applied AI, 17(8-9), 687-714. Balabanovic, M., & Shoham, Y. (1997, March). Fab: Content-Based, Collaborative Recommendation. Communications of the ACM, 40(3), 66-72. Basu, C., Hirsh, H., & Cohen, W. (1998). Recommendation as Classification:Using Social and Content-Based Information in Recommendation. Proceedings of the 15th National Conference on Artificial Intelligence, 714-720. American Association for Artificial Intelligence Press. Buckland, M. (2002). Al Techniques for Game Programming. Course Technology. Burke, R. (2002). Hybrid Recommender Systems: Survey and Experiments. User Modeling and User-Adapted Interaction, 12(4), 331-370. Chowdary, B. (2007). Back-Propagation Artificial Neural Network Approach for Machining Centre Selection. Journal of Manufacturing Technology Management, 18(3), 315-332. Chung, H., & Gray, P. (1999). Special Section: Data Mining. Journal of Management Information Systems, 16(1), 11-17. Claypool, M., Gokhale, A., Miranda, T., Murnikov, P., Netes, D., & Sartin, M. (1999). Combining Content-Based and Collaborative Filters in an Online Newspaper. Proceedings of the ACM SIGIR Workshop on Recommender Systems: Algorithms and Evaluation. Berkeley, CA. Cotter, P., & Smyth, B. (2000). PTV: Intelligent Personalised TV Guides. Proceedings of the 17th National Conference on Artificial Intelligence, 957-964. American Association for Artificial Intelligence Press. Curt, H. (1995). The Devile’s in the Detail: Techniques, Tool, and Applications for Data Mining and Knowledge Discovery - Part 1. Intelligent Software Strategies, 6(9), 1-15. Dayhoff, J., & DeLeo, J. (2001). Artificial Neural Networks. Cancer, 91(8), 1615-1635. Delgado, J., & Davidson, R. (2002). Knowledge Bases and User Profiling in Travel and Hospitality Recommender Systems. Proceedings of the Enter Conference, 1-16. Austria: Springer Vienna. Fesenmaier, D., Ricci, F., Schaumlechner, E., Wober, K., & Zanella, C. (2003). Dietorecs: Travel Advisory for Multiple Decision Styles. Information and Communication Technologies in Tourism. Garcia, I., Sebastia, L., & Onaindia, E. (2011). On the Design of Individual and Group Recommender Systems for Tourism. Expert Systems with Applications, 38(6), 7683-7692. Hagan, M. T., Demuth, H. B., & Beale, M. H. (1996). Neural Network Design. Brooks/Cole. Han, J., & Kamber, M. (2006). Data Mining: Concepts and Techniques, (2). San Fransisco: Morgan Kaufmann. Haubl, G., & Trifts, V. (2000). Consumer Decision Making in Online Shopping Environments: The Effects of Interactive Decision Aids. Marketing Science, 19(1), 4-21. Heaton, J. (2008). Introduction to Neural Networks with Java. Heaton Research. Hecht-Nielsen, R. (1989). Theory of the Backpropagation Neural Network. Proceedings of the International Joint Conference on Neural Networks, 593-605. New York: Institute of Electrical and Electronics Engineers Publications. Heijden, H., Kotsis, G., & Kronsteiner, R. (2005). Mobile Recommendation Systems for Decision Making ‘On the Go’. Proceedings of the International Conference on Mobile Business, 137-143. Jannach, D., Zanker, M., Felfernig, A., & Friedrich, G. (2011). Recommender Systems: An Introduction. New York: Cambridge University Press. Kolodner, J. (1993). Case-Based Reasoning. San Fransisco, CA: Morgan Kaufmann. Lee, M., Choi, P., & Woo, Y. (2002). A Hybrid Recommender System Combining Collaborative Filtering with Neural Network. Adaptive Hypermedia and Adaptive Web-Based Systems Lecture Notes in Computer Science, 2347, 531-534. Lewis, D. D., Schapire, R. E., Callan, J. P., & Papka, R. (1996). Training Algorithms for Linear Text Classifiers. SIGIR ‘96 Proceedings of the 19thAnnual International ACM SIGIR Conference on Research and Development in Information Retrieval, 298-306. Loh, S. L. (2004). A Tourism Recommender System Based on Collaboration and Text Analysis. Information Technology & Tourism, 6(3), 157-165. Melville, P., Mooney, R., & Nagarajan, R. (2002). Content-Boosted Collaborative Filtering for Improved Recommendations. Proceedings of the 8th National Conference on Artificial Intelligence, 187-192. American Association for Artificial Intelligence Press. Middleton, S., Shadbolt, N., & De Roure, D. (2003). Capturing Interest Through Inference and Visualization. Proceedings of International Conference on Knowledge Capture, 62-69. Florida: Association for Computering Machinery Press. Mooney, R., & Roy, L. (2000). Content-Based Book Recommending Using Learning for Text Categorization. Proceedings of the fifth ACM Conference on Digital Libraries, 195-204. Noguerra, J., Barranco, M., Segura, R., & Martinez, L. (2012). A Mobile 3D-GIS Hybrid Recommender System for Tourism. Information Sciences, 215, 37-52. Pazzani, M. (1999). A Framework for Collaborative, Content-Based and Demographic Filtering. Artificial Intelligence Review, 13(5-6), 393-408. Resnick, P., & Varian, H. (1997). Recommender Systems. Communications of the ACM, 40(3), 56-58. Resnick, P., Iacovou, N., Suchak, M., Bergstrom, P., & Riedl, J. (1994). GroupLens: An Open Architecture for Collaborative Filtering of Netnews. Proceedings of Conference on Computer Supported Cooperative Work, 175-186. Chapel Hill, NC: Association for Computering Machinery Press. Ricci, F., Arsian, B., Mirzadeh, N., & Venturini, A. (2002). ITR: A Case-based Travel Advisory System. Proceedings of the 6th European Conference on Advances in Case-Based Reasoning, 613-641. Aberdeen, Scotland: Springer-Verlag. Schafer, J., Konstan, J., & Riedl, J. (1999). Recommender Systems in E-Commerce. Proceedings of the 1st ACM Conference on Electronic Commerce, 158-166. Schein, A., Popescul, A., Ungar, L., & Pennock, D. (2002). Methods and Metrics for Cold-Start Recommendations. Proceedings of the 25th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, 253-260. Shardanand, U., & Maes, P. (1995). Social Information Filtering: Algorithms for Automating “Word of Mouth”. Proceedings of the Conference on Human Factors in Computing Systems, 210-217. Denver, CO: Association for Computering Machinery. Spiegel, S., Kunegis, J., & Li, F. (2009). Hydra: A Hybrid Recommender System [Cross-Linked Rating and Content Information]. Proceedings of the 1st ACM International Workshop on Complex Networks Meet Information & Knowledge Management, 75-80. Taiwan Tourism Bureau. (2012). Taiwan's Inbound Tourism Market. Retrieved from http://admin.taiwan.net.tw/upload/contentFile/auser/b/annual_2012_htm/English/chapter1_2.html Terveen, L., & Hill, W. (2001). Beyond Recommender Systems: Helping People Help Each Other. HCI in The New Millenium, 487-509. van Rijsbergen, C. (1979). Information Retrieval. Journal of the American Society for Information Science, 30(6), 374-375. Witten, I., & Frank, E. (2000). Data Mining: Practical Machine Learning Tools and Techniques with Java Implementations. San Fransisco, California: Morgan Kaufmann. Ye, N. (2003). The Handbook of Data Mining. Lawrence Erlbaum Associates. Zanker, M., & Jessenitschnig, M. (2009). Case-studies on Exploiting Explicit Customer Requirements in Recommender Systems. User Modelling and User-Adapted Interaction, 19(1-2), 133-166. Zanker, M., Jessenitschnig, M., Jannach, D., & Gordea, S. (2007). Comparing Recommendation Strategies in a Commercial Context. IEEE Intelligent Systems, 22(3), 69-73.
|