|
(1) Gerothanassis, I.; Anastassios, T.; Vassiliki, E.; Klimentini, B. Nuclear Magnetic Resonance(NMR) spectroscopy: Basic principles and phenomena, and their applications to chemistry, biology and medicine. 2002, 3, 229-252. (2) Ding, S.; Wu, Z.; Yu, K. C.; Lai, P. H. The dependence of relaxation rates and chemical shift on the size of the imaged molecules and the concentration of MRI contrast agents. Mol. Phys. 2009, 107, 2261-2273. (3) Swift, T. J.; Connick, R. E. NMR‐relaxation mechanisms of O17 in aqueous solutions of paramagnetic cations and the lifetime of water molecules in the first coordination sphere. J. Chem. Phys. 1962, 37, 307-320. (4) O’Reilley D. E.; Poole, Jr., C. Nuclear magnetic resonance of alumina containing transition metals. J. Phys. Chem. 1963, 6, 1762–1771. (5) Luz, Z.; Meiboom, S. Proton Relaxation in dilute solutions of cobalt(II) and nickel(II) ions in methanol and the rate of methanol exchange of the solvation sphere. J. Chem. Phys. 1964 ,40, 2686-2692. (6) Pfeiffer, H. Der Translationsanteil der protonenrelaxation in wasserigen losungen paramagnetischen ionen. Ann. Phys. (Leipzig) 1961, 8, 1–8. (7) Leigh, Jr., J. S. Relaxation times in systems with chemical exchange: Some exact solutions. J. Magn. Reson. 1971, 4, 308-311. (8) McLaughlin, A. C.; Leigh, J. S. Relaxation times in systems with chemical exchange. J. Magn. Reson. 1973, 9, 296-304. (9) Hwang, L. P.; Freed, J. H. Dynamic effects of pair correlation functions on spin relaxation by translational diffusion in liquids. J. Chem. Phys. 1975, 63, 4017-4025. (10) Freed, J. H. Dynamic effects of pair correlation functions on spin relaxation by translational diffusion in liquids. II. Finite jumps and independent T1 processes. J. Chem. Phys. 1978, 68, 4034-4037. (11) Koenig, S. H.; Brown, R. D. Field-cycling relaxometry of protein solutions and tissue:implications for MRI. Prog. Nucl. Magn. Reson. Spectrosc. 1990, 22, 487-567. (12) Geraldes, C. F.; Urbano, A. M.; Alpoim, M. C.; Sherry, A. D.; Kuan, K. T.; Rajagopalan, R.; Maton, F. Preparation, physico-chemical characterization, and relaxometry studies of various gadolinium(III)-DTPA-bis(amide) derivatives as potential magnetic resonance contrast agents. Magn. Reson. Imag. 1995, 13, 401-420. (13) Bertini, I.; Galas, O.; Luchinat, C.; Paragi, C. A computer program for the calculation of paramagnetic enhancements of nuclear-relaxation rates in slowly rotating systems. J. Magn Reson. A 1995, 113, 151-158. (14) Kowalewski, J.; Nordenskiöld, L.; Benetis, N.; Westlund, P. O. Theory of nuclear spin relaxation in paramagnetic systems in solution. Prog. Nucl. Magn. Reson. Spectrosc. 1985, 17, 141-185. (15) Peters J. A.; Huskens, J.; Raber, D. J. Lanthanide induced shifts and relaxation rate enhancements. Prog. Nuc. Magn. Reson. Spectrosc. 1996, 28, 283. (16) Clarkson, R. B.; Hwang, J. H.; Belford, R. I. Solvate structures in water-methanol solutions of MRI contrast agents: Electron spin echo envelope modulation in gadolinium chelates. Magn. Reson. Med. 1993, 29, 521-527. (17) Powell, D. H.; Dhubhghaill, O. M.; Pubanz, D.; Helm, L.; Lebedev, Y. S.; Schlaepfer ,W.; Merbach, A. E. Structural and dynamic parameters obtained from 17O NMR, EPR, and NMRD studies of monomeric and dimeric Gd3+ complexes of interest in magnetic resonance imaging: An integrated and theoretically self-consistent approach. J. Am. Chem. Soc. 1996, 118, 9333-9346. (18) Minton, A.P.; Wilf, J. Effect of macromolecular crowding upon the structure and function of an enzyme: glyceraldehyde-3-phosphate dehydrogenase. Biochemistry 1981, 20, 4821–4826. (19) Fulton, A .B. How crowded is the cytoplasm? Cell 1982, 30, 345-347. (20) Minton, A .P. The effect of volume occupancy upon the thermodynamic activity of proteins: some biochemical consequences. Mol. Cell Biochem. 1983, 55, 119-140. (21) Hall, D.; Minton A. P. Macromolecular crowding: qualitative and semiquantative success, quantitative challenges. Biochim. Biophys. Acta. 2003, 1649, 127-139. (22) Rivas, G.; Ferrone, F.; Herzfeld, J. Life in a crowded world. EMBO Rep. 2004, 5, 23-27. (23) Zhou, H. X. Loops, linkages, rings, catenanes, cages, and crowders: entropy-based strategies for stabilizing proteins. Acc. Chem. Res. 2004, 37, 123-130. (24) Zhou, H. X. Polymer models of protein stability, folding, and interactions. Biochemistry 2004, 43, 2141-2154. (25) Minton, A. P. Influence of macromolecular crowding upon the stability and state of association of proteins: predictions and observations. J. Pharm. Sci. 2005, 94, 1668-1675. (26) Minton, A. P. How can biochemical reactions within cells differ from those in test tubes? J. Cell Sci. 2006, 119, 2863-2869. (27) Ellis, R. J. ; Minton, A. P. Protein aggregation in crowded environments. Biol. Chem. 2006, 387, 485-497. (28) Zhou, H. X. Protein folding in confined and crowded environments. Arch. Biochem. Biophys. 2008, 469, 76-82.
(29) Ando, T.; Skolnick, J. Crowding and hydrodynamic interactions likely dominate in vivo macromolecular motion. Proc. Natl. Acad. Science. 2010, 107, 18457-18462. (30) Munishkina, L. A.; Cooper, E.M.; Uversky, V.N.; Fink, A.L. The effect of macromolecular crowding on protein aggregation and amyloid fibril formation. J Mol Recognit. 2004, 17, 456-464. (31) Homchaudhuri, L.; Sarma, N.; Swaminathan, R. Effect of crowding by dextrans and Ficolls on the rate of alkaline phosphatase-catalyzed hydrolysis: a size-dependent investigation. Biopolymers 2006, 83, 477–486. (32) Derham, B.K.; Harding, J.J. The effect of the presence of globular proteins and elongated polymers on enzyme activity. Biochim. Biophys. Acta. 2006, 1764, 1000–1006. (33) Jiang, M.;Guo, Z.H. Effects of macromolecular crowding on the intrinsic catalytic efficiency and structure of enterobactin-specific isochorismate synthase. J. Am. Chem. Soc. 2007, 129, 730–731. (34) Hu, Z.; Jiang, J.; Rajagopalan, R. Effects of macromolecular crowding on biochemical reaction equilibria: a molecular thermodynamic perspective. Biophys. J. 2007, 93, 1464–1473. (35) Minton, A.P. Models for excluded volume interaction between an unfolded protein and rigid macromolecular cosolutes: macromolecular crowding and protein stability revisited. Biophys. J. 2005, 88, 971–985. (36) Zhou, H.X. Protein folding and binding in confined spaces and in crowded solutions. J. Mol. Recognit. 2004, 17, 368–375. (37) Qu, Y.; Bolen, C.L.; Bolen, D.W. Osmolyte-driven contraction of a random coil protein. Proc. Natl. Acad. Sci. USA. 1998, 95, 9268–9273. (38) Cheung, M.S.; Klimov, D.; Thirumalai, D. Proc. Molecular crowding enhances native state stability and refolding rates of globular proteins Natl. Acad. Sci. USA. 2005, 102 , 4753–4758. (39) May, A.; Huehns, E. R. The concentration dependence of the oxygen affinity of haemoglobin S. Br. J. Haematol. 1975, 30, 317-335. (40) Milton, A. P. Excluded volume as a determinant of macromolecular structure and reactivity. Biopolymers 1981, 20, 2093-2120. (41) Minton, A. P.; Wilf, Effect of macromolecular crowding upon the structure and function of an enzyme: glyceraldehyde-3-phosphate dehydrogenase. J. Biochemistry 1981, 20, 4821-4826. (42) Fulton, A. B. How crowded is the gytoplasm? Cell 1982, 30, 345-347. (43) Minton, A. P. The effect of volume occupancy upon the thermodynamic activity of proteins: some biochemical consequences. Mol. Cell. Biochem. 1983, 55, 119-140. (44) Zimmerman, S. B.; Harrison, B. Macromolecular crowding increases binding of DNA polymerase to DNA: An adaptive effect. Proc. Natl. Acad. Sci. USA 1987, 84, 1871-1875. (45) Zimmerman, S. B. ; Minton, A. P. Macromolecular crowding: Biochemical, and physiological Consequences. Annu. Rev. Biophys. Biomol. Struct. 1993, 22, 27-65. (46) Minton, A. P. Confinement as a determinant of macromolecular structure and reactivity. Biophys. J. 1992, 63, 1090-1100. (47) Minton, A. P. Confinement as a determinant of macromolecular structure and reactivity. II. Effects of weakly attractive interactions between confined macrosolutes and confining structure. Biophys. J. 1995, 68, 1311-1322. (48) Ai, X; Zhou, Z.; Bai, Y.; Choy, W.Y.15N NMR spin relaxation dispersion study of the molecular crowding effects on protein folding under native conditions J. Am. Chem. Soc. 2006, 128, 3916–3917. (49) Li, C.; Charlton, L. M.; Lakkavaram, A.; Seagle, C.; Wang, G.; Young, G. B.; Macdonald, J. M.; Pielak, G. J. Differential dynamical effects of macromolecular crowding on an intrinsically disordered protein and a globular protein: Implications for in-cell NMR spectroscopy. J. Am. Chem. Soc. 2008, 130, 6310-6311. (50) Charlton, L.M.; Barnes, C.O.;Li, C; Young, G.B.; Pielak, G.J. Residue-level interrogation of macromolecular crowding effects on protein stability. J. Am. Chem. Soc. 2008, 130, 6826–6830. (51) Li, C.; Wang, Y.; Pielak, G.J. Translational and Rotational diffusion of a small globular protein under crowded conditions. J. Phys. Chem. B 2009, 113, 13390-13392. (52) Wang, Y.; Li, C.; Pielak, G.J. Effects of proteins on protein diffusion. J. Am. Chem. Soc. 2010, 132, 9392-9397. (53) Schlesinger, A. P.; Wang, Y.; Tadeo, X.; Millet, O.; Pielak, G. J. Millisecond dynamics in Glutaredoxin during catalytic turnover is dependent on substrate binding and absent in the resting states. J. Am. Chem. Soc. 2011, 133, 3034–3044. (54) Wang, Y.; Benton, L. A.; Singh, V.; Pielak G. J. Disordered protein diffusion under crowded conditions. J. Phys. Chem. Lett. 2012, 3, 2703–2706. (55) Zhou, H.X.; Rivas, G.; Minton, A. P. Macromolecular crowding and confinement: Biochemical, Biophysical, and potential physiological cinsequences. Annu. Rev. Biophys. 2008, 37, 375-397. (56) Lauffer, R. B. Paramagnetic metal complexes as water proton relaxation agents for NMR imagings: theory and design. Chem. Rev. 1987, 87, 901-927. (57) Caravan, P.; Thomas, J.E.; McMurry, T.J.; Lauffer, R.B. Gadolinium(III) chelates as MRI contrast agents: structure, dynamics, and applications. Chem. Rev. 1999, 99, 2293-2352. (58) Merbach, A. E. eds, “The chemistry of contrast agents in medical magnetic resonance imaging”, Wiley, 2001. (59) Accardo, A; Tesauro, D.; Aloj, L.; Pedone, C.; Morelli, G. Supramolecular aggregates containing lipophilic Gd(III) complexes as contrast agents in MRI. Coord. Chem.Rev. 2009, 253, 2193-2213. (60) Vexler , V. S.; Clément, O.; Schmitt-Willich, H.; Brasch, R. C. Effect of varying the molecular weight of the MR contrast agent Gd-DTPA-polylysine on blood pharmacokinetics and enhancement patterns. J. Magn. Reson. Imag. 1994, 4, 381-388.
(61) Desser, T. S.; Rubin D. L.; Muller, H. H.; Qing, F; Khodor, S.; Zanazzi, G.; Young, S. W.; Ladd, D. L.; Wellons, J.; Kellar, K. E.; Toner, J. L.; Snow, R. A. Dynamics of tumor imaging with Gd-DTPA—polyethylene glycol polymers: Dependence on molecular weight. J. Magn. Reson. Imag. 1994, 4, 467-472. (62) Serber, Z. et al. High-resolution macromolecular NMR spectroscopyinside living cells. J. Am. Chem. Soc. 2001, 123, 2446-2447. (63) Serber, Z.; Corsini, L.; Durst, F.; Dotsch, V. In-cell NMR spectroscopy. Methods Enzymol. 2005, 394, 17-41. (64) Serber, Z.; Selenko, P.; Hansel, R.; Reckel, S.; Lohr, F.; Ferrell, Jr., J. E.; Wagner, G; Dotsch, V. Investigating macromolecules inside cultured and injected cells by in-cell NMR spectroscopy. Nature Protocols 2006, 1, 2701-2709. (65) Reckel, S.; Hansel, R.; Lohr, F.; Dotsch, V. In-cell NMR spectroscopy. Prog. Nucl. Magn. Reson. Spectrosc. 2007, 51, 91-101. (66) Selenko, P.; Wagner, G. J. Struct. Biol. Looking into live cells with in-cell NMR spectroscopy. J. Struct. Biol. 2007, 158, 244-253. (67) Burz, D. S.; Dutta, K.; Cowburn, D.; Shekhtman, A. Mapping structural interactions using in-cell NMR spectroscopy (STINT-NMR). Nature Methods 2006, 3, 91-93. (68) Sakakibara, D.; Sasaki, A.; Ikeya, T.; Hamatsu, J.; Hanashima, T.; Mishima, M.; Yoshimasu ,M., Hayashi, N.; Mikawa, T.; Walchli, M.; Smith, B. O.; Shirakawa, M.; Guntert, P.; Ito, Y. Protein structure determination in living cells by in-cell NMR spectroscopy. Nature 2009, 458, 102-105. (69) Inomata, K.; Ohno, A.; Tochio, H.; Isogai, S.; Tenno, T.; Nakase, I.; Takeuchi, T.; Futaki, S.; Ito, Y.; Hiroaki, H.; Shirakawa, M. High-resolution multi-dimensional NMR spectroscopy of proteins in human cells. Nature 2009, 458, 106-109. (70) Li, C., Wang, Y., Pielak, G.J. Translational and Rotational Diffusion of a Small Globular Protein under Crowded Conditions. J. Phys. Chem. B 2009, 113, 13390- 13392. (71) Wang, Y.; Li, C.; Pielak, G.J. Effects of Proteins on Protein Diffusion. J. Am. Chem. Soc. 2010, 132, 9392-9397.
|