跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.168) 您好!臺灣時間:2025/09/05 14:28
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:李明峯
研究生(外文):Ming-Feng Lee
論文名稱:單錨浮式發電載具之動力研究
論文名稱(外文):Dynamic Analysis of a Single-point-mooring Floating Platform for Current Power Generator
指導教授:黃材成黃材成引用關係
指導教授(外文):Chai-Cheng Huang
學位類別:碩士
校院名稱:國立中山大學
系所名稱:海洋環境及工程學系研究所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:120
中文關鍵詞:水工模型試驗單錨系統海流發電Morison經驗公式
外文關鍵詞:single-point-mooring (SPM)hydrodynamic experimentcurrent power generationMorison equation
相關次數:
  • 被引用被引用:2
  • 點閱點閱:411
  • 評分評分:
  • 下載下載:68
  • 收藏至我的研究室書目清單書目收藏:2
過去人類活動往往倚賴化石燃料做為電力之供應來源及提供機械運作所需之動力,但近年來由於化石燃料日漸短缺,連帶造成其價格的攀升。此外由於過去對於化石燃料的過度依賴使得溫室效應以及各種汙染議題的嚴重性與日俱增,為保障人類福祉,如何開發低汙染且具有一定效率之替代性能源是世界各國均須重視的一項議題。台灣東部海域有黑潮流經,可常年提供一穩定且流向固定之海流,在海流發電上具有不可忽視之發展潛力。然而台灣東部海域水深深,施工不易,若採用樁基式基礎進行發電機組設置可能使得工程成本爆增,故可採用錨碇式浮體作為發電載具之主結構以克服水深過深之問題,且由於黑潮終年流向穩定,因此可規劃為單錨系統。
此研究為未來進行黑潮洋流發電機組設計之前置階段,主要針對澎湖跨海大橋週邊海域之地形及海象條件規劃一組單錨浮式發電載具以瞭解其動力特性,並作為日後進行黑潮洋流發電系統規劃設計及實務運作之參考依據。為了探討此載具之動力特性,採用自行發展之數值模式及水工模型實驗等方法,分析此單錨浮式發電載具遭受波流交互作用時,錨碇纜繩所承受之張力與載具本身之運動行為。數值方法是以質量集結點法為基礎,配合修正後之Morison Equation計算各構件之海域環境外力,組成運動聯立方程式,再經由4階的Runge-Kutta法求解此系統中各構件之運動方程式,即可獲得其在環境外力作用下之動力特性。為驗證數值模式之準確性,亦製作水工模型進行一系列之實驗,結果顯示結構物之運動行為,數值模擬之預測值與實驗量測值具有相當的吻合性;而最大錨碇纜繩之張力峰值上,預測值也較實驗值略大,顯示自行發展之數值模式較為保守,因此在實務上具有可靠之應用價值。
In the past, human activities usually rely on the fossil fuel to provide the energy for the mechanical operations or industries development. In recent years, the trend of gradually diminishing fossil fuel has sparked the unstable social economic problems for some countries relying on imported energy, and also the overuse of these traditional fuel directly increase the severity of greenhouse effect and other issues of environment pollution. Worsen by those serious pollution issues, many countries are engaging in searching for renewable energy resources to replace some amount of fossil fuel.
Taiwan, located at the western rim of the Pacific Ocean, has imported 98% of energy for consumption. According to a previous survey, this island state is rich in wave and ocean current energy waiting for exploring, especially the Kuroshio Current which passes along the east coast of Taiwan and provides a steady and northward current. Harnessing this kind of ocean energy becomes one of the options to reach the goal of energy self-independence. In addition to reducing carbon dioxide emission from burning fossil fuel, it may slow down the greenhouse gas effect and thus mitigate global warming problems. However, the depth of eastern sea of Taiwan is usually over 500 meters deep, and the maximum depth can get as deep as 3000 meters. The constructions could be extremely difficult for such water depth by using the pile foundation for the power generation system, so selecting a floating platform with a single-point-mooring (SPM) system may becpme the only choice to overcome the deep water problem.
This research is the pre-phase for the Kuroshio Current generation system, and the goal is to design a set of SPM generation system based on the submarine topography and sea conditions near the Penghu Bay Bridge. To increase the safety and reliability of a floating structure, it is necessary to analysis the forces and hydrodynamic properties of the structure including the motions of the single-point-mooring floating platform and the mooring tensions under environmental loadings. This study consists of two parts: numerical simulation and physical modeling. In numerical simulation, a lumped mass method with a Morison type of relative motion equation are applied to calculate the drag and inertial forces on the system components and then are equally divided to the associated nodes to form a system of motion equations based on Newton’s second law. Through the fourth-order Runge-Kutta method, the dynamic performance of the floating platform can be obtained. To verify the numerical model, a hydrodynamic experiment was carried out in a wave tank (35x1x1.2 m), and the result of the platform motions shows that both numerical predictions and measurements of modeling have good agreement, though the maximum mooring tension indicates that the numerical predictions are slightly higher than that of physical model. It demonstrates that the present numerical model is reliable and useful for practical applications.
誌謝 i
摘要 ii
Abstract iii
目錄 v
表目錄 vii
圖目錄 viii
符號對照表 xi
第一章 緒論 1
1.1前言 1
1.2文獻回顧 2
1.3研究目的 3
1.4本文組織 4
第二章 海上發電載具基本理論 5
2.1海上發電載具形式介紹 5
2.2單錨浮式發電載具系統 8
2.2.1 錨碇系統 8
2.2.2 海上發電載具 9
2.3波流場之基本假設 9
2.4海上發電載具系統受力分析 13
2.4.1 流阻力及慣性力 13
2.4.2 重力 15
2.4.3 浮力 15
2.4.4 張力 15
第三章 數值模式 16
3.1數值模式概述 16
3.2質量集結點法概述 16
3.3 構件受力情形 18
3.3.1 纜繩 18
3.3.2 海上發電載具 23
3.4質量集結點之運動方程式 33
3.5 Runge-Kutta method 35
3.6數值流程圖 35
第四章 水工模型實驗 38
4.1實驗目的 38
4.2實驗規劃 38
4.2.1 實驗模型尺寸及材質 38
4.2.2 實驗儀器與設備 40
4.2.3 實驗量測項目 51
4.2.4 實驗佈置 52
4.2.5 水工模型實驗步驟 53
4.2.6 實驗設計條件 56
4.3分析方法 57
4.3.1 水位分析 57
4.3.2 張力分析 57
4.3.3 載具模型剛體運動分析(影像處理) 58
4.3.4 流阻力及慣性力係數測定方法 60
第五章 水工模型試驗與數值模式結果 63
5.1水工模型流阻力及慣性力係數測定 63
5.1.1 應變計率定方法及模型受力修正 64
5.1.2 係數測定結果 66
5.2水工模型與數值模式結果驗證 68
5.2.1 純流場實驗結果與數值模式驗證 70
5.2.2 波流共存實驗結果與數值模式驗證 71
5.2.2.1 張力值驗證 75
5.2.2.2 結構物運動情形驗證 78
第六章 結論與建議 84
6.1結論 84
6.2建議 85
參考文獻 86
附錄A 纜繩材料尺寸資料表 88
附錄B 剛體運動 89
附錄C 纜繩破斷強度試驗 96
附錄D 影像處理 97
[1]李光蔭(1935)「球 面 三 角 術 」,台灣商務印書館,第6-7頁。
[2]陳陽益、莊文傑(1990)「波流交會作用理論之初步探討」,第12屆海洋環境工程研討會論文集,第248-265頁。
[3]張耀民(2000)「可沈式箱網養殖工程之研究」,國立中山大學海洋環境及工程學系碩士班碩士論文。
[4]唐宏結(2001)「箱網容積變形改善研究」,國立中山大學海洋環境及工程學系碩士班碩士論文。
[5]謝榮華(2001) 「波浪作用下垂直與水平柱體受力行為及減力設施之實驗研究」,國立中山大學海洋環境及工程學系碩士班碩士論文。
[6]黃添成(2002)「水下雷射掃瞄量測系統CCD 攝影機之校正」,國立中山大學海下技術研究所碩士論文。
[7]潘仁雅(2007)「單錨式箱網結構改善及錨碇纜繩老化風險分析研究」,國立中山大學海洋環境及工程學系碩士班碩士論文。
[8]唐宏結(2008)「箱網養殖浮式平台之研究」,國立中山大學海洋環境及工程學系博士班博士論文。
[9]李冠穎(2010)「外海浮筏式蚵架動力分析」,國立中山大學海洋環境及工程學系碩士班碩士論文。
[10]陳慶盈、蔡原祥、廖建明、許朝敏、陳思樺(2011)「海流發電技術研析」,第33屆海洋工程研討會論文集,第823-828頁。
[11]Webster, R.L., (1976) “An application of the finite element method to the determination of nonlinear static and dynamic responses of underwater cable structures.” General Electric Technical Information Series Report R76EMH2, Syracuse, New York.
[12]Wittenbug, J. (1977), “Dynamics of Systems of Rigid Bodies”, B. G. Teubner Stuttgart, pp 19-31.
[13]Brebbia, C.A., Walker, S. (1979), “Dynamic Analysis of Offshore Structures”, Newnes-Butterworths, London.
[14]Blevins, R.D. (1984), “Applied Fluid Dynamics Handbook”, Van Nostrand Reinhold Company, pp 334.
[15]D’Souza, A.F., Garg, V.K. (1984), “Advanced Dynamics Modeling and Analysis”, Prentice-Hall, Inc., Eglewood Cliffs, New Jersey, pp. 78-114, pp 152-155.
[16]Huang, C.C., Tang, H.J., Liu, J.Y. (2006a), “Dynamical analysis of net cage structures for marine aquaculture: Numerical simulation and model testing”, Aquacultural Engineering 35, pp. 258-270.
[17]Huang, C.C., Tang, H.J., Wang, B.S., Yang, R.Y., Kuo, L.A., Jan, S.J. (2006b), “Numerical simulation and field study of a single-point-mooring marine cage”, Proc. of the 16th International Offshore and Polar Engineering Conference 3, pp. 292-296.
[18]Huang, C.C., Tang, H.J., Pan, J.Y. (2009), “Numerical modeling of an SPM cage with a frontal rigid frame”, IEEE Journal of Oceanic Engineering 34(2), pp 113-122.
[19]Huang, C.C., Lee, K.Y. (2010), “Dynamic analysis of a floating raft system for oyster culture”, Proc. 20th International Offshore and Polar Engineering Conference Vol 1, pp 543-547.
[20]Chen, F., Lu, S.M., Tseng, K.T., Lee, S.C., Wang, E. (2010), “Assessment of renewable energy reserves in Taiwan”, Renewable and Sustainable Energy Reviews Vol 14, pp 2511-2528.
[21]Chen, F. (2010), “Kuroshio power plant development plan”, Renewable and Sustainable Energy Reviews Vol 14, pp 2655-2668.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top