|
[1] D.W. Bange, A.E. Barkauskas, and P.J. Slater, Efficient dominating sets in graphs, In R.D. Ringeisen and F.S. Roberts, editors, Applications of Discrete Mathematics, pp. 189–199, SIAM, Philadelphia, PA, 1988. [2] J.R.S. Blair, P. Heggernes, S. Horton, and F. Manne, Broadcast domination algorithms for interval graphs, series-parallel graphs, and trees, Congr. Numer. 169 (2004), pp. 55–77. [3] K.S. Booth, J.H. Johnson, Dominating sets in chordal graphs, SIAM J. Com- puting 11 (1982), pp. 191–199. [4] A. Brandst‥adt, V.D. Chepoi, F.F. Dragan, The algorithmic use of hypertree structure and maximum neighbourhood orderings, Discrete Applied Mathmetics 82 (1998), pp. 43–77. [5] A. Brandst‥adt, V.B. Le, and J.P. Spinrad, Graph classes: A survey, SIAM Monographs on Discrete Mathematics and Applications, Philadelphia, 1999. [6] G.J. Chang and G.L. Nemhauser, The k-domination and k-stability problem on graphs, Technical Report 540, School of Operations Res. and Industrial Eng., Cornell Univ, 1982. [7] M.-S. Chang, Efficient algorithms for the domination problems on interval and circular-arc graphs, SIAM J. Computing 27 (1998), pp. 1671–1694. [8] J. Dabney, B.C. Dean, and S.T. Hedetniemi A linear-time algorithm for broadcast domination in a tree, to appear in Networks. [9] X. Deng, P. Hell, and J. Huang, Linear time representation algorithms for proper circular arc graphs and proper interval graphs, SIAM J. Computing 25 (1996), pp. 390–403. [10] A.K. Dewdeny, Fast Turing reductions between problems in NP, Technical Report 71, Dept. of Computer Science, University of West Ontario, 1981. [11] J.E. Dunbar, D.J. Erwin, T.W. Haynew, S.M. Hedetniemi, and S.T. Hedetniemi, Broadcasts in graphs, Discrete Applied Mathmetics 154 (2006), pp. 59–75. [12] D.J. Erwin, Dominating broadcasts in graphs, Bull. Inst. Comb. Appl. 42 (2004), pp. 89–105. [13] M. Farber, Domination, independent domination, and duality in strongly chordal graphs, Discrete Applied Mathmetics 7 (1984), pp. 115–130. [14] M.R. Fellows and M.N. Hoover, Perfect domination, Australas, J. Combin. 3 (1991), pp. 141–150. [15] C. de Figueiredo, J. Meidanis, and C.P. de Mello, A linear time algorithm for proper interval graph recognition, Information Processing Letters 56 (1995), pp. 179–184. [16] M.R. Grary and D.S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness, W. H. Freeman and Co., New York, NY, 1979. [17] T.W. Haynes, S.T. Hedetniemi, and P.J. Slater, Fundamentals of Domination in Graphs, Marcel Dekker, Inc., New-York, 1998. [18] T.W. Haynes, S.T. Hedetniemi, and P.J. Slater (Eds.), Domination in graphs: Advanced Topics, Marcel Dekker, Inc., New-York, 1998. [19] P. Heggernes and D. Lokshtanov, Optimal broadcast dominaton in polynomial time, Discrete Mathmetics 306 (2006), pp. 3267–3280. [20] W.-L. Hsu and K.-H. Tsai, Linear time algorithms on circular-arc graphs, Infor- mation Processing Letters 40 (1991), pp. 123–129. [21] D. Kratsch, Domination and total domination in asteroidal triple-free graphs, Discrete Applied Mathmetics 99 (2000), pp. 111–123. [22] C.L. Liu, Introduction to Combinatorial Mathematics, McGraw-Hill, New York, NY, 1968. [23] G. Ramalingan and C.P. Rangan, A unified approach to domination problems on interval graphs, Information Processing Letters 27 (1988), pp. 271–274. [24] P.J. Slater, R-Domination in Graphs, J. Assoc. Comput. Mach. 23 (1976), pp. 446–450. [25] C.B. Smart and P.J. Slater, Complexity results for closed neighborhood order parameters, Congr. Numer. 112 (1995), pp.83–96. [26] J. Valdes, R.E. Tarjan, and E.L. Lawler, The recognition of series parallel digraphs, SIAM J. Computing 11 (1982), pp. 298–313. [27] D.B. West, Introduction to Graph Theory, Second Edition, Prentice Hall 2001.
|