|
1. Fitton A, Goa KL. Lamotrigine: An update of its pharmacology and therapeutic use in epilepsy. Drugs 1995; 50: 691–713. 2. LaRoche SM, Helmers SL. The new antiepileptic drugs: Scientific review. JAMA 2004; 291: 605–14. 3. Vajda FJ, Dodd S, Horgan D. Lamotrigine in epilepsy, pregnancy and psychiatry—A drug for all seasons? J Clin Neurosci 2013; 20: 13–16. 4. Cheung H, Kamp D, Harris E. An in vitro investigation of the action of lamotrigine on neuronal voltage-activated sodium channels. Epilepsy Res. 1992, 13, 107–112. 5. Xie XM, Lancaster B, Peakman T, Garthwaite J. Interaction of the antiepileptic drug lamotrigine with recombinant rat brain type IIA N+ channels and with native Na+ channels in rat hippocampal neurones. Plügers Archiv 1995, 430, 437–446. 6. Kuo CC, Lu L. Characterization of lamotrigine inhibition of Na+ channels in rat hippocampal neurones. Br J Pharmacol 1997; 121: 1231–38. 7. Rogawski MA, Röscher W. The neurobiology of antiepileptic drugs. Nat Rev Neurosci 2004; 5: 553–64. 8. Geddes JR, Calabrese JR, Goodwin G.M. Lamotrigine for treatment of bipolar depression: Independent meta-analysis and meta-regression of individual patient data from five randomised trials. Br J Psychiatry 2009; 194: 4–9. 9. Tränkner A, Sander C, Schönknecht P. A critical review of the recent literature and selected therapy guidelines since 2006 on the use of lamotrigine in bipolar disorder. Neuropsychiatr Dis Treat 2013; 9: 101–11. 33 10. Prica C, Hascoet M, Bourin M. Antidepressant-like effect of lamotrigine is reversed by veratrine: A possible role of sodium channels in bipolar depression. Behav. Brain Res 2008; 191: 49–54. 11. Biel M, Wahl-Schott C, Michalakis S, Zong X. Hyperpolarization-activated cation channels: From genes to function. Physiol. Rev. 2009, 89, 847–885. 12. Santoro B, Chen S, Luthi A, Pavlidis P, Shumyatsky GP, Tibbs GR, et al. Molecular and functional heterogeneity of hyperpolarization-activated pacemaker channels in the mouse CNS. J Neurosci 2000; 20: 5264–75. 13. Pape HC. Queer current and pacemaker: the hyperpolarizationactivated cation current in neurons. Annu Rev Physio 1996 1; 58: 299–327, 14. Robinson RB, Siegelbaum SA. Hyperpolarization-activated cation currents: from molecules to physiological function. Annu Rev Physiol 2003; 65: 453–80. 15. Magee JC. Dendritic hyperpolarization-activated currents modify the integrative properties of hippocampal CA1 pyramidal neurons. J. Neurosci. 1998; 18: 7613–24. 16. Magee JC. Dendritic Ih normalizes temporal summation in hippocampal CA1 neurons. Nat Neurosci 1999;.2: 508-14. 17. Magee JC. Dendritic integration of excitatory synaptic input. Nat Rev Neurosci 2000; 1: 181–90. 18. Huang, Z. Lujan R, Kadurin I, Uebele VN, Renger JJ, Dolphin AC,et al. Presynaptic HCN1 channels regulate Cav3.2 activity and neurotransmission at select cortical synapses. Nat Neurosci 2011; 14: 478–86. 19. Huang Z, Walker MC, Shah MM. Loss of dendritic HCN1 subunits enhances cortical excitability and epileptogenesis. J Neurosci 2009; 29: 10979–88. 34 20. Shah MM, Anderson AE, Leung V, Lin X, Johnston D. Seizure induced plasticity of h channels in entorhinal cortical layer III pyramidal neurons. Neuron 2004; 44: 495–508. 21. Poolos NP, Migliore M, Johnston D. Pharmacological upregulation of h-channels reduces the excitability of pyramidal neuron dendrites. Nat Neurosci. 2002; 5: 767–74. 22. Ben-Ari Y, Represa A. Brief seizure episodes induce long-term potentiation and mossy fiber sprouting in the hippocampus. Trends Neurosci 1990; 13: 312-18. 23. Epsztein J, Represa A, Jorquera I, Ben-Ari Y, Crépel V. Recurrent mossy fibers establish aberrant kainite receptor-operated synapses on granule cells from epileptic rats. J Neurosci 2005; 25 :8229-39. 24. Campbell S, MacQueen G.The role of the hippocampus in the pathophysiology of major depression.J Psychiatry Neurosci 2004; 29(6): 417-26. 25. Förster E, Zhao S, Frotscher M. Laminating the hippocampus. Nat Rev Neurosci 2006; 7: 259-268. 26. Ishizuka N. Laminar organization of the pyramidal cell layer of the subiculum in the rat. J Comp Neurol 2001; 435: 89-110. 27. Freund TF, Buzsáki G. Interneurons of the hippocampus. Hippocampus 1996; 6: 347–470 28. Klausberger T, Somogyi P. Neuronal diversity and temporal dynamics: The unity of hippocampal circuit operations. Science 2008; 321: 53–7. 29. Maccaferri G, Lacaille JC. Interneuron diversity series: hippocampal interneuron classifications–making things as simple as possible, not simpler. Trends Neurosci 2003; 26: 564–71. 35 30. Miles R, To´th K, Gulya´s AI, Ha´jos N, Freund TF. Differences between somatic and dendritic inhibition in the hippocampus. Neuron 1996; 16: 815–823. 31. Maccaferri G.; McBain CJ. The hyperpolarization-activated current (Ih) and its contribution to pacemaker activity in rat CA1 hippocampal stratum oriens-alveus interneurons. J Physiol 1996; 497: 119–30. 32. Maccaferri G. Stratum oriens horizontal interneuron diversity and hippocampal network dynamics. J Physiol 2005; 562: 73–80. 33. Zemankovics R, Káli S, Paulsen O, Freund TF, Hájos N. Differences in subthreshold resonance of hippocampal pyramidal cells and interneurons: The role of h-current and passive membrane characteristics. J Physiol 2010; 588: 2109–32. 34. Lupica CR, Bell JA, Hoffman AF, Watson PL. Contribution of the hyperpolarization-activated current I(h) to membrane potential and GABA release in hippocampal interneurons. J Neurophysiol 2001; 86: 261–268. 35. Kraushaar U, Jonas P. Efficacy and stability of quantal GABA release at a hippocampal interneuron-principal neuron synapse. J Neurosci 2000; 20: 5594–5607. 36. Bartos M, Vida I, Jonas P. Synaptic mechanisms of synchronized gamma oscillations in inhibitory interneuron networks. Nat Rev Neurosci 2007; 8: 45–56. 37. Southan AP, Morris NP, Stephens GJ, Robertson B. Hyperpolarization activated currents in presynaptic terminals of mouse cerebellar basket cells. J Physiol 2000; 526: 91–7. 36 38. Aponte Y, Lien CC, Reisinger E, Jonas P. Hyperpolarization-activated cation channels in fast-spiking interneurons of rat hippocampus. J Physiol 2006; 574: 229–43. 39. Elgueta C, Köhler J, Bartos M. Persistent discharges in dentate gyrus perisoma inhibiting interneurons require hyperpolarization-activated cyclic nucleotide-gated channel activation. J Neurosci 2015; 35: 4131–4139. 40. Peng BW, Justice JA, Zhang K, He XH, Sanchez RM. Increased basal synaptic inhibition of hippocampal area CA1 pyramidal neurons by an antiepileptic drug that enhances IH. Neuropsychopharmacology 2010; 35: 464–72. 41. Lien CC, Martina M, Schultz J, Ehmke H, Jonas P. Gating, modulation, and subunit composition of voltage-gated K+ channels in dendritic inhibitory interneurons of rat hippocampus. J Physiol 2002; 538: 405–19. 42. Liu YC, Cheng JK, Lien CC. Rapid dynamic changes of dendritic inhibition in the dentate gyrus by presynaptic activity patterns. J Neurosci 2014; 34: 1344–57. 43. Soltesz I, Smetters DK, Mody I. Tonic inhibition originates from synapses close to the soma. Neuron 1995; 14: 1273–83. 44. Cunningham MO, Jones RSG. The anticonvulsant, lamotrigine, decreases spontaneous glutamate release but increases spontaneous GABA release in the rat entorhinal cortex in vitro. Neuropharmacology 2000; 39: 2139–46. 45. Greenhill SD, Jones RSG. Diverse antiepileptic drugs increase the ratio of background synaptic inhibition to excitation and decrease neuronal excitability in neurons of the rat entorhinal cortex in vitro. Neuroscience 2010; 167: 456–74. 37 46. Lees G, Leach MJ. Studies on the mechanism of action of the novel anticonvulsant lamotrigine (Lamictal) using primary neuroglial cultures from rat cortex. Brain Res 1993; 612: 190–99. 47. Leach MJ, Marden CM, Miller AA. Pharmacological studies on lamotrigine, a novel potential antiepileptic drug: II. Neurochemical studies on the mechanism of action. Epilepsia 1986; 27: 490–97. 48. Leach M, Baxter MG, Critchley MAE. Neurochemical and behavioral aspects of lamotrigine. Epilepsia 1991; 32: S4–S8. 49. Braga MF, Aroniadou-Anderjaska V, Post RM, Li H. Lamotrigine reduces spontaneous and evoked GABAA receptor-mediated synaptic transmission in the basolateral amygdala: Implications for its effects in seizure and affective disorders. Neuropharmacology 2002; 42: 522–29. 50. Pothmann L, Müller C, Averkin RG, Bellistri E, Miklitz C, Uebachs M, et al. Function of inhibitory micronetworks is spared by Na+ channel-acting anticonvulsant drugs. J Neurosci 2014; 34: 9720–35. 51. Hefft S, Jonas P. Asynchronous GABA release generates long-lasting inhibition at a hippocampal interneuron–principal neuron synapse. Nat Neurosci 2005; 8: 1319–28. 52. Hu H, Jonas P. A supercritical density of Na+ channels ensures fast signaling in GABAergic interneuron axons. Nat Neurosci 2014; 17: 686–93. 53. Lee CY, Fu WM, Chen CC, Su MJ, Liou HH. Lamotrigine inhibits postsynaptic AMPA receptor and glutamate release in the dentate gyrus. Epilepsia 2008; 49: 888–97. 54. Martina M, Jonas P. Functional differences in Na channel gating between fast-spiking interneurons and principal neurons of rat hippocampus. J Physiol 1997; 505: 593–603. 38 55. Martina M, Vida I, Jonas P. Distal initiation and active excitatory and inhibitory propagation of action potentials in interneuron dendrites. Science 2000; 287: 295–300. 56. Zucker RS, Regehr WG. Short-term synaptic plasticity. Annu Rev Physiol 2002; 64: 355–405. 57. Hefft S, Kraushaar U, Geiger JRP, Jonas P. Presynaptic short-term depression is maintained during regulation of transmitter release at a GABAergic synapse in rat hippocampus. J Physiol 2002; 539: 201–8. 58. Klausberger T, Somogyi P. Neuronal diversity and temporal dynamics: The unity of hippocampal circuit operations. Science 2008; 321: 53–7. 59. Bezaire MJ, Soltesz I. Quantitative assessment of CA1 local circuits: Knowledge base for interneuron-pyramidal cell connectivity. Hippocampus 2013, 23, 751–785. 60. Pouille F, Scanziani M. Routing of spike series by dynamic circuits in the hippocampus. Nature 2004; 429: 717–23.
|