跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.132) 您好!臺灣時間:2025/11/30 00:27
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃昱尹
研究生(外文):Yu-Yin Huang
論文名稱:拉莫三嗪對海馬迴伽碼胺基丁酸神經傳導的影響
論文名稱(外文):The Lamotrigine-Mediated Effect on Hippocampal GABAergic Transmission
指導教授:邱士華邱士華引用關係連正章
指導教授(外文):Shih-Hwa ChiouCheng-Chang Lien
學位類別:博士
校院名稱:國立陽明大學
系所名稱:臨床醫學研究所
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2016
畢業學年度:105
語文別:英文
論文頁數:60
中文關鍵詞:拉莫三嗪過極化啟動之環核苷酸門控離子通道伽碼胺基丁酸的聯絡神經元籃狀細胞顆粒細胞突觸後抑制型電流
外文關鍵詞:LamotrigineHyperpolarization-activated cyclic nucleotide-gatedGABAergic interneuronBasket cellGranule cellInhibitory postsynaptic current
相關次數:
  • 被引用被引用:0
  • 點閱點閱:226
  • 評分評分:
  • 下載下載:23
  • 收藏至我的研究室書目清單書目收藏:0
拉莫三嗪,是一種廣為人知的電壓門控之鈉離子通道阻斷劑,它可抑制神經元的興奮反應。然而,最近的研究發現,拉莫三嗪亦可促進過極化啟動之環核苷酸門控離子通道的開啟,進而活化分泌伽碼胺基丁酸的聯絡神經元。在海馬迴之齒狀迴區域中,有一種細胞體抑制型聯絡神經元,主要為高頻動作電位的籃狀細胞。它能強而有力地抑制顆粒細胞的活性。值得注意的是,籃狀細胞同時具有相當多的電壓門控之鈉離子通道與過極化啟動之環核苷酸門控離子通道,而這兩種通道皆會促進籃狀細胞產生持續的動作電位。我在大鼠的新鮮腦切片下,使用膜箝制全細胞紀錄,想要研究拉莫三嗪對於籃狀細胞的活性及其伽碼胺基丁酸的輸出的淨效果究竟為何 ? 我們發現,施予拉莫三嗪可明顯抑制顆粒細胞上記錄到的總合突觸後抑制型電流大小。然而,透過同時配對記錄藍狀細胞與顆粒細胞發現: 拉莫三嗪並不影響顆粒細胞上記錄到的單一突觸後抑制型電流的大小及其多重脈衝比率,這意味著: 拉莫三嗪不會影響籃狀細胞軸突末梢伽碼胺基丁酸釋放的機率。所以,拉莫三嗪抑制突觸後抑制型電流的原因,乃是降低突觸前細胞的興奮反應所造成的。與上述結果一致地,拉莫三嗪亦會顯著降低顆粒細胞上自發性突觸後抑制型電流之頻率但不影響微細突觸後抑制型電流的頻率。當再回到海馬迴CA1區域做驗證時,我們發現拉莫三嗪仍會降低在初始層樹突抑制型聯絡神經元的興奮反應,同時其下游的椎狀神經元所記錄到的自發性突觸後抑制型電流也受到明顯的抑制,然而過極化啟動之離子通道電流卻不受影響。總結來說,拉莫三嗪不會增強過極化啟動之離子通道電流也不會促進伽碼胺基丁酸抑制訊息的釋出。拉莫三嗪抗癲癇效果,可能仍來自於鈉離子通道的阻斷作用與整體神經網路抑制的結果。
Lamotrigine (LTG) is generally considered as a voltage-gated sodium (Nav) channel blocker, which can decrease neuronal excitability. However, recent studies suggest that LTG can also serve as a hyperpolarization-activated cyclic nucleotide-gated (HCN) channel enhancer and can increase the excitability of GABAergic interneurons (INs). Perisomatic inhibitory INs, predominantly fast-spiking basket cells (BCs), powerfully inhibit granule cells (GCs) in the hippocampal dentate gyrus. Notably, BCs express abundant Nav channels and HCN channels, both of which are able to support sustained action potential generation. Using patch-clamp whole-cell recording in acute rat hippocampal slices, we investigated the net LTG effect on BC excitability and its GABAergic output. We showed that bath application of LTG significantly decreased the amplitude of evoked compound inhibitory postsynaptic currents (IPSCs) in GCs. In contrast, simultaneous paired recordings from BCs to GCs showed that LTG had no effect on both the amplitude and the multiple-pulse ratio of the unitary IPSCs, suggesting that LTG did not affect GABA release probability at BC axonal terminal, though it suppressed cell excitability. In line with this, LTG decreased spontaneous IPSC (sIPSC) frequency, but not miniature IPSC frequency. When re-examining the LTG effect on GABAergic transmission in the cornus ammonis region 1 (CA1) area, we found that LTG markedly inhibited both the excitability of dendrite-targeting INs in the stratum oriens and the concurrent sIPSCs recorded on their targeting pyramidal cells (PCs) without significant hyperpolarization-activated current (Ih) enhancement. In summary, LTG has no effect on augmenting Ih in GABAergic INs and does not promote GABAergic inhibitory output. The antiepileptic effect of LTG is likely through Nav channel inhibition and the suppression of global neuronal network activity.
目錄
誌謝 ................................................................................................................... i
目錄 ....................................................................................................................... iii
ABSTRACT ............................................................................................................... v
中文摘要 ................................................................................................................. vii
ABBREVIATIONS .......................................................................................... viii
1. INTRODUCTION ....................................................................................... 1
1.1. Lamotrigine, a sodium channel blocker and clinical implications …..... 1
1.2. HCN channel may be a novel LTG target ………………………………. 3
1.2.1. HCN or Ih channel …………………………………………………... 3
1.2.2. Physiological significance of Ih channel …………………………... 4
1.2.3. Pathological significance of HCN channel………………………... 5
1.2.4. LTG may act on HCN channel …………………………………….. 6
1.3. Hippocampal GABAergic interneurons and HCN channel expression
1.3.1. Hippocampus ……………………………………………………...... 6
1.3.2. Diversity of GABAergic interneurons ……………………………... 7
1.3.3. GABAergic transmission………………………………………........ 8
1.3.4. HCN expression on INs ……………………………………………. 9
1.4. The rationale and aims of this study.................................................... 11
1.5. Rapid understanding of the IPSC measurement................................. 12
2. MATERIALS AND METHODS................................................................... 14
2.1. Acute Brain Slice Preparation............................................................. 14
2.2. Electrophysiology................................................................................ 14
2.3. Morphological Identification................................................................. 16
2.4. Solutions and Drugs ......... .................................................................. 16
2.5. Data Analysis and Statistics................................................................ 17
3. RESULTS
3.1. LTG reduced Compound IPSCs ........................................................... 18
3.2. LTG had no effects on Unitary IPSCs………………………………….... 19
3.3. LTG decreased sIPSCs, but not mIPSCs…...………………………...... 20
3.4. LTG Inhibited the axonal and cellular excitability of BCs in the DG…... 20
3.5. LTG suppressed sIPSCs rather than mIPSCs in CA1 PCs………….... 22
3.6. LTG inhibited the excitability of CA1 O-LM INs……………………….... 22
3.7. LTG had no effect on Ih in CA1 O-LM INs, CA1 PCs and DG
fast-spiking BCs …………………………………………………...............
23
3.8. LTG preferentially inhibited excitatory inputs than inhibitory inputs……............................................................................................
24



4. DISCUSSION
4.1 Summary of our results …………………………………………………… 26
4.2 LTG shows no effect on Ih in our evidence……………………………... 27
4.3 LTG on GABAergic neurotransmissions…………………………………. 28
4.4 Miscellaneous Issues……………………………………………………… 30
4.5 Conclusion and perspective………………………………………………. 32

REFERENCES.............................................................................................. 33
FIGURES
Figure 1. ......................................................................................................... 40
Figure 2. ......................................................................................................... 42
Figure 3. ......................................................................................................... 43
Figure 4. ......................................................................................................... 45
Figure 5. ......................................................................................................... 47
Figure 6. ......................................................................................................... 49
Figure 7. ......................................................................................................... 51
Figure 8. ......................................................................................................... 52
Figure 9. ......................................................................................................... 53
Figure 10. ....................................................................................................... 54
Figure 11. ....................................................................................................... 55
Figure 12. ....................................................................................................... 56
Figure 13. ....................................................................................................... 57
Figure 14. ....................................................................................................... 58
Figure 15......................................................................................................... 59

PUBLICATIONS.............................................................................................. 60
1. Fitton A, Goa KL. Lamotrigine: An update of its pharmacology and
therapeutic use in epilepsy. Drugs 1995; 50: 691–713.
2. LaRoche SM, Helmers SL. The new antiepileptic drugs: Scientific
review. JAMA 2004; 291: 605–14.
3. Vajda FJ, Dodd S, Horgan D. Lamotrigine in epilepsy, pregnancy and
psychiatry—A drug for all seasons? J Clin Neurosci 2013; 20: 13–16.
4. Cheung H, Kamp D, Harris E. An in vitro investigation of the action of lamotrigine on neuronal voltage-activated sodium channels. Epilepsy Res. 1992, 13, 107–112.
5. Xie XM, Lancaster B, Peakman T, Garthwaite J. Interaction of the antiepileptic drug lamotrigine with recombinant rat brain type IIA N+ channels and with native Na+ channels in rat hippocampal neurones. Plügers Archiv 1995, 430, 437–446.
6. Kuo CC, Lu L. Characterization of lamotrigine inhibition of Na+ channels in rat hippocampal neurones. Br J Pharmacol 1997; 121: 1231–38.
7. Rogawski MA, Röscher W. The neurobiology of antiepileptic drugs. Nat Rev Neurosci 2004; 5: 553–64.
8. Geddes JR, Calabrese JR, Goodwin G.M. Lamotrigine for treatment of bipolar depression: Independent meta-analysis and meta-regression of individual patient data from five randomised trials. Br J Psychiatry 2009; 194: 4–9.
9. Tränkner A, Sander C, Schönknecht P. A critical review of the recent literature and selected therapy guidelines since 2006 on the use of lamotrigine in bipolar disorder. Neuropsychiatr Dis Treat 2013; 9: 101–11.
33
10. Prica C, Hascoet M, Bourin M. Antidepressant-like effect of lamotrigine is reversed by veratrine: A possible role of sodium channels in bipolar depression. Behav. Brain Res 2008; 191: 49–54.
11. Biel M, Wahl-Schott C, Michalakis S, Zong X. Hyperpolarization-activated cation channels: From genes to function. Physiol. Rev. 2009, 89, 847–885.
12. Santoro B, Chen S, Luthi A, Pavlidis P, Shumyatsky GP, Tibbs GR, et al. Molecular and functional heterogeneity of hyperpolarization-activated
pacemaker channels in the mouse CNS. J Neurosci 2000; 20: 5264–75.
13. Pape HC. Queer current and pacemaker: the hyperpolarizationactivated
cation current in neurons. Annu Rev Physio 1996 1; 58: 299–327,
14. Robinson RB, Siegelbaum SA. Hyperpolarization-activated cation
currents: from molecules to physiological function. Annu Rev Physiol 2003; 65: 453–80.
15. Magee JC. Dendritic hyperpolarization-activated currents modify the integrative properties of hippocampal CA1 pyramidal neurons. J. Neurosci. 1998; 18: 7613–24.
16. Magee JC. Dendritic Ih normalizes temporal summation in hippocampal
CA1 neurons. Nat Neurosci 1999;.2: 508-14.
17. Magee JC. Dendritic integration of excitatory synaptic input. Nat Rev Neurosci 2000; 1: 181–90.
18. Huang, Z. Lujan R, Kadurin I, Uebele VN, Renger JJ, Dolphin AC,et al.
Presynaptic HCN1 channels regulate Cav3.2 activity and neurotransmission
at select cortical synapses. Nat Neurosci 2011; 14: 478–86.
19. Huang Z, Walker MC, Shah MM. Loss of dendritic HCN1 subunits enhances cortical excitability and epileptogenesis. J Neurosci 2009; 29: 10979–88. 34
20. Shah MM, Anderson AE, Leung V, Lin X, Johnston D. Seizure induced
plasticity of h channels in entorhinal cortical layer III pyramidal neurons. Neuron 2004; 44: 495–508.
21. Poolos NP, Migliore M, Johnston D. Pharmacological upregulation of h-channels reduces the excitability of pyramidal neuron dendrites. Nat Neurosci. 2002; 5: 767–74.
22. Ben-Ari Y, Represa A. Brief seizure episodes induce long-term potentiation and mossy fiber sprouting in the hippocampus. Trends Neurosci 1990; 13: 312-18.
23. Epsztein J, Represa A, Jorquera I, Ben-Ari Y, Crépel V. Recurrent mossy fibers establish aberrant kainite receptor-operated synapses on granule cells from epileptic rats. J Neurosci 2005; 25 :8229-39.
24. Campbell S, MacQueen G.The role of the hippocampus in the pathophysiology of major depression.J Psychiatry Neurosci 2004; 29(6): 417-26.
25. Förster E, Zhao S, Frotscher M. Laminating the hippocampus. Nat
Rev Neurosci 2006; 7: 259-268.
26. Ishizuka N. Laminar organization of the pyramidal cell layer of the subiculum in the rat. J Comp Neurol 2001; 435: 89-110.
27. Freund TF, Buzsáki G. Interneurons of the hippocampus. Hippocampus 1996; 6: 347–470
28. Klausberger T, Somogyi P. Neuronal diversity and temporal dynamics: The unity of hippocampal circuit operations. Science 2008; 321: 53–7.
29. Maccaferri G, Lacaille JC. Interneuron diversity series: hippocampal
interneuron classifications–making things as simple as possible, not simpler.
Trends Neurosci 2003; 26: 564–71.
35
30. Miles R, To´th K, Gulya´s AI, Ha´jos N, Freund TF. Differences between
somatic and dendritic inhibition in the hippocampus. Neuron 1996;
16: 815–823.
31. Maccaferri G.; McBain CJ. The hyperpolarization-activated current (Ih) and its contribution to pacemaker activity in rat CA1 hippocampal stratum oriens-alveus interneurons. J Physiol 1996; 497: 119–30.
32. Maccaferri G. Stratum oriens horizontal interneuron diversity and hippocampal network dynamics. J Physiol 2005; 562: 73–80.
33. Zemankovics R, Káli S, Paulsen O, Freund TF, Hájos N. Differences in subthreshold resonance of hippocampal pyramidal cells and interneurons: The role of h-current and passive membrane characteristics. J Physiol 2010; 588: 2109–32.
34. Lupica CR, Bell JA, Hoffman AF, Watson PL. Contribution of the hyperpolarization-activated current I(h) to membrane potential and GABA release in hippocampal interneurons. J Neurophysiol 2001; 86: 261–268.
35. Kraushaar U, Jonas P. Efficacy and stability of quantal GABA release at a hippocampal interneuron-principal neuron synapse. J Neurosci 2000; 20: 5594–5607.
36. Bartos M, Vida I, Jonas P. Synaptic mechanisms of synchronized gamma oscillations in inhibitory interneuron networks. Nat Rev Neurosci 2007; 8: 45–56.
37. Southan AP, Morris NP, Stephens GJ, Robertson B. Hyperpolarization activated currents in presynaptic terminals of mouse cerebellar basket cells. J Physiol 2000; 526: 91–7.
36
38. Aponte Y, Lien CC, Reisinger E, Jonas P. Hyperpolarization-activated cation channels in fast-spiking interneurons of rat hippocampus. J Physiol 2006; 574: 229–43.
39. Elgueta C, Köhler J, Bartos M. Persistent discharges in dentate gyrus perisoma inhibiting interneurons require hyperpolarization-activated cyclic nucleotide-gated channel activation. J Neurosci 2015; 35: 4131–4139.
40. Peng BW, Justice JA, Zhang K, He XH, Sanchez RM. Increased basal synaptic inhibition of hippocampal area CA1 pyramidal neurons by an antiepileptic drug that enhances IH. Neuropsychopharmacology 2010; 35: 464–72.
41. Lien CC, Martina M, Schultz J, Ehmke H, Jonas P. Gating, modulation, and subunit composition of voltage-gated K+ channels in dendritic inhibitory interneurons of rat hippocampus. J Physiol 2002; 538: 405–19.
42. Liu YC, Cheng JK, Lien CC. Rapid dynamic changes of dendritic inhibition in the dentate gyrus by presynaptic activity patterns. J Neurosci 2014; 34: 1344–57.
43. Soltesz I, Smetters DK, Mody I. Tonic inhibition originates from synapses close to the soma. Neuron 1995; 14: 1273–83.
44. Cunningham MO, Jones RSG. The anticonvulsant, lamotrigine, decreases spontaneous glutamate release but increases spontaneous GABA release in the rat entorhinal cortex in vitro. Neuropharmacology 2000; 39: 2139–46.
45. Greenhill SD, Jones RSG. Diverse antiepileptic drugs increase the ratio of background synaptic inhibition to excitation and decrease neuronal excitability in neurons of the rat entorhinal cortex in vitro. Neuroscience 2010; 167: 456–74.
37
46. Lees G, Leach MJ. Studies on the mechanism of action of the novel anticonvulsant lamotrigine (Lamictal) using primary neuroglial cultures from rat cortex. Brain Res 1993; 612: 190–99.
47. Leach MJ, Marden CM, Miller AA. Pharmacological studies on lamotrigine, a novel potential antiepileptic drug: II. Neurochemical studies on the mechanism of action. Epilepsia 1986; 27: 490–97.
48. Leach M, Baxter MG, Critchley MAE. Neurochemical and behavioral aspects of lamotrigine. Epilepsia 1991; 32: S4–S8.
49. Braga MF, Aroniadou-Anderjaska V, Post RM, Li H. Lamotrigine reduces spontaneous and evoked GABAA receptor-mediated synaptic transmission in the basolateral amygdala: Implications for its effects in seizure and affective disorders. Neuropharmacology 2002; 42: 522–29.
50. Pothmann L, Müller C, Averkin RG, Bellistri E, Miklitz C, Uebachs M, et al. Function of inhibitory micronetworks is spared by Na+ channel-acting anticonvulsant drugs. J Neurosci 2014; 34: 9720–35.
51. Hefft S, Jonas P. Asynchronous GABA release generates long-lasting inhibition at a hippocampal interneuron–principal neuron synapse. Nat Neurosci 2005; 8: 1319–28.
52. Hu H, Jonas P. A supercritical density of Na+ channels ensures fast signaling in GABAergic interneuron axons. Nat Neurosci 2014; 17: 686–93.
53. Lee CY, Fu WM, Chen CC, Su MJ, Liou HH. Lamotrigine inhibits postsynaptic AMPA receptor and glutamate release in the dentate gyrus. Epilepsia 2008; 49: 888–97.
54. Martina M, Jonas P. Functional differences in Na channel gating between fast-spiking interneurons and principal neurons of rat hippocampus. J Physiol 1997; 505: 593–603.
38
55. Martina M, Vida I, Jonas P. Distal initiation and active excitatory and inhibitory propagation of action potentials in interneuron dendrites. Science 2000; 287: 295–300.
56. Zucker RS, Regehr WG. Short-term synaptic plasticity. Annu Rev Physiol 2002; 64: 355–405.
57. Hefft S, Kraushaar U, Geiger JRP, Jonas P. Presynaptic short-term depression is maintained during regulation of transmitter release at a GABAergic synapse in rat hippocampus. J Physiol 2002; 539: 201–8.
58. Klausberger T, Somogyi P. Neuronal diversity and temporal dynamics: The unity of hippocampal circuit operations. Science 2008; 321: 53–7.
59. Bezaire MJ, Soltesz I. Quantitative assessment of CA1 local circuits: Knowledge base for interneuron-pyramidal cell connectivity. Hippocampus 2013, 23, 751–785.
60. Pouille F, Scanziani M. Routing of spike series by dynamic circuits in the hippocampus. Nature 2004; 429: 717–23.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top