跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.168) 您好!臺灣時間:2025/09/05 22:35
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:邱啟倫
研究生(外文):Chiu, Chi-Lun
論文名稱:三相四開關變頻供電型同步磁阻電動機之無模型式預測電流控制器設計與研製
論文名稱(外文):Design and Implementation of Model-Free Predictive Current Controller for Four-Switch Three-Phase Inverter-Fed Synchronous Reluctance Motors
指導教授:林正凱林正凱引用關係
指導教授(外文):Lin, Cheng-Kai
口試委員:賴炎生黃仲欽連國龍余興政林正凱
口試委員(外文):Lai, Yen-ShinHwang, Jonq-ChinLian, Kuo-LungYu, Hsing-ChengLin, Cheng-Kai
口試日期:2015-07-20
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:101
中文關鍵詞:同步磁阻電動機三相四開關變頻器預測電流控制數位訊號處理器
外文關鍵詞:synchronous reluctance motorfour-switch three-phase inverterpredictive current controldigital signal processor
相關次數:
  • 被引用被引用:0
  • 點閱點閱:171
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文提出一種適用於三相四開關同步磁阻電動機驅動系統之新型預測電流控制。開發適用於三相四開關變頻供電型同步磁阻電動機驅動系統的新型開關切換法則,並加以討論這種方案的可行性與正確性,以提升驅動系統的電流控制能力。進而期望能滿足業界對低成本驅動系統搭載高效能電流控制的需求。三相四開關驅動系統相較於六開關驅動系統能有效減少硬體和軟體開發的成本。在三相四開關同步磁阻電動機驅動系統中,能選擇的開關切換策略有限,一般而言採用磁滯電流控制,其缺點會使變頻器產出較大的電流漣波,為了有效提升其電流追蹤的性能,開發適用於低成本驅動系統的新型開關切換策略是迫切需要的。因此,所提方法是基於定子電流測量和電流變化量,以預測未來的定子電流。最後,使用德州儀器公司所生產的TMS320F2809數位訊號處理器作為控制核心,以執行所提預測電流控制和磁滯電流控制的演算法。實驗結果可作為日後開發新型開關切換策略的參考依據。`
This thesis presents a novel predictive current control for four-switch three-phase inverter-fed synchronous reluctance motor drive systems. We not only develop a new strategy for four-switch three-phase inverter-fed synchronous reluctance motor drive systems, but also discuss the feasibility and correctness of this method so as to improve the ability of the current control of the motor drive system. Furthermore, we expect to meet the industrial requirements of low-cost drive system equipped with high-performance current control. Compared to the six-switch drive system, the four-switch three-phase drive system can effectively reduce the development costs in both hardware and software. For a four-switch three-phase synchronous reluctance motor drive system, its switch strategies that we can choose are few. Generally speaking, the drawback of hysteresis current control is that it has large ripples in the output currents of the inverter. In order to improve the current-tracking performance, the development of the new switching strategy for low-cost drive system is urgently needed. As a result, the proposed method is based on the stator current measurement and the current variation so as to predict the future stator current. A digital signal processor, TMS320F2809, made by Texas Instruments Company, is used to execute the algorithms of the proposed predictive current control and hysteresis current control. Experimental results can be used as a reference for developing a new switching strategy of a four-switch three-phase drive system in the future.
摘要 Ⅰ
Abstract Ⅱ
目次 Ⅲ
圖目次 Ⅴ
表目次 Ⅷ
符號索引 Ⅸ
第一章 緒論 1
1.1研究背景與動機 1
1.2文獻回顧 3
1.3目的與貢獻 5
1.4論文大綱 6
第二章 同步磁阻電動機 7
2.1簡介 7
2.2結構及特性 8
2.3數學模式 9
第三章 新型預測電流控制器 18
3.1簡介 18
3.2基本原理 19
3.3新型預測電流控制器設計 21
第四章 被動式適應性滑動模式速度控制器設計 27
4.1簡介 27
4.2回授被動化 28
4.3適應性回授被動化 29
4.4控制器設計 32
第五章 系統研製 37
5.1簡介 37
5.2硬體電路製作 40
5.2.1變頻器電路 40
5.2.2電流偵測電路 42
5.2.3電流/電壓轉換電路 44
5.2.4類比/數位轉換電路 45
5.2.5數位訊號處理器 46
5.3軟體程式設計 50
第六章 實測結果 54
6.1簡介 54
6.2實測結果 55
第七章 結論與未來展望 96
7.1結論 96
7.2未來展望 96
參考文獻 97

[1]C. A. Adams, “The Design of Induction Motors,” Proceedings of the American Institute of Electrical Engineers, vol. 24, no. 6, pp. 327-362, Jun. 1905.
[2]E. G. Strangas, “Coupling the Circuit Equations to the Non-Linear Time Dependent Field Solution in Inverter Driven Induction Motors,” IEEE Transactions on Magnetics, vol. 21, no. 6, pp. 2408-2411, Nov. 1985.
[3]G. Kron, “Equivalent Circuit of the Primitive Rotating Machine With Asymmetrical Stator and Rotor,” Transactions of the American Institute of Electrical Engineers, vol. 66, no. 1, pp. 17-23, Jan. 1947.
[4]T. D. Graybeal, “The Nature of Vibration in Electric Machinery,” Transactions of the American Institute of Electrical Engineers, vol. 63, no. 10, pp. 712-718, Oct. 1944.
[5]T. F. Schubert, F. G. Jacobitz, and E. M. Kim, “Exploring the Basic Principles of Electric Motors and Generators With a Low-Cost Sophomore-Level Experiment,” IEEE Transactions on Education, vol. 52, no. 1, pp. 57-65, Nov. 2008.
[6]C. D. Knight, “The Principles and Systems of Electric Motor Control,” Proceedings of the American Institute of Electrical Engineers, vol. 34, no. 12, pp. 2915-2926, Dec. 1915.
[7]R. D. Hall and W. J. Konstanty, “Commutation of DC Motors,” IEEE Industry Applications Magazine, vol. 16, no. 6, pp. 1077-2618, Nov. –Dec. 2010.
[8]M. Ray and A. K. Datta, “Optimum Design of Commutation Circuit in a Thyristor Chopper for DC Motor Control,” IEEE Transactions on Industrial Electronics and Control Instrumentation, vol. IECI-23, no. 2, pp. 129-132, May 1976.
[9]P. L. Alger and T. C. Johnson, “Rating of General-Purpose Induction Motors,” Electrical Engineering, vol. 58, no. 9, pp. 445-459, Sept. 1939.
[10]M. Ikeda, S. Sakabe, and K. Higashi, “Experimental Study of High Speed Induction Motor Varying Rotor Core Construction,” IEEE Transactions on Energy Conversion, vol. 5, no. 1, pp. 98-103, Mar. 1990.
[11]F. Kako, T. Tsuruta, K. Nagaishi, and H. Kohmo. “Experimental Study on Magnetic Noise of Large Induction Motors,” IEEE Transactions on Power Apparatus and Systems, vol. PAS-102, no. 8, pp. 2805-2810, Aug. 1983.
[12]S.-I. Kim, Y.-K. Kim, G.-H. Lee, and J.-P. Hong, “A Novel Rotor Configuration and Experimental Verification of Interior PM Synchronous Motor for High-Speed Applications,” IEEE Transactions on Magnetics, vol. 48, no. 2, pp. 843-846, Feb. 2012.
[13]K. Liu and Z. Zhu, “Mechanical Parameter Estimation of Permanent Magnet Synchronous Machines with Aiding from Estimation of Rotor PM Flux Linkage,” IEEE Transactions on Industry Applications, vol. PP, no. 99, pp. 1, Feb. 2015.
[14]M. Boussak, “Implementation and Experimental Investigation of Sensorless Speed Control with Initial Rotor Position Estimation for Interior Permanent Magnet Synchronous Motor Drive,” IEEE Transactions on Power Electronics, vol. 20, no. 6, pp. 1413-1422, Nov. 2005.
[15]P. Andrada, B. Blanque, E. Martinez, and M. Torrent, “A Novel Type of Hybrid Reluctance Motor Drive,” IEEE Transactions on Industrial Electronics, vol. 61, no. 8, pp. 4337-4345, Aug. 2013.
[16]A. D. and Y. Fukuda, “A New Torque and Flux Control Method for Switched Reluctance Motor Drives,” IEEE Transactions on Power Electronics, vol. 17, no. 4, pp. 543-557, Jul. 2002.
[17]J. Kim, K. Ha and R. Krishnan, “Single-Controllable-Switch-Based Switched Reluctance Motor Drive for Low Cost,Variable-Speed Applications,” IEEE Transactions on Power Electronics, vol. 27, no. 1, pp. 379-387, May 2011.
[18]H. Chen and J. J. Gu, “Implementation of the Three-Phase Switched Reluctance Machine System for Motors and Generators,” IEEE/ASME Transactions on Mechatronics, vol. 15, no. 3, pp. 421-432, Aug. 2009.
[19]T. J. E. Miller, A. Hutton, C. Cossar, and D. A. Staton, “Design of a Synchronous Reluctance Motor Drive,” IEEE Transactions on Industry Applications, vol. 27, no. 4, pp. 741-749, Jul./Aug. 1991.
[20]D. A. Staton, W. L. Soong, and T. J. E. Miller, “Unified Theory of Torque Production in Switched Reluctance and Synchronous Reluctance Motors,” IEEE Transactions on Industry Applications, vol. 31, no. 2, pp. 329-337, Mar./Apr. 1995.
[21]M. Mohamadian, E. Nowicki, F. Ashrafzadeh, A. Chu, R. Sachdeva, and E.Evanik, “A Novel Neural Network Controller and Its Efficient DSP Implementation for Vector-controlled Induction Motor Drives,” IEEE Transactions on Industry Applications, vol. 39, no. 6, pp. 1622-1629, Nov.-Dec. 2003.
[22]X. Huangsheng, H. A. Toliyat, and L. J. Petersen, “Five-Phase Induction Motor Drives With DSP-Based Control System,” IEEE Transactions on Power Electronics, vol. 17, no. 4, pp. 524-533, Jul. 2002.
[23]M. M. Morcos and A. Lakshmikanth, “DSP-Based Solutions for AC Motor Drives,” IEEE Power Engineering Review, vol. 19, no. 9, pp. 57-59, Sept. 1999.
[24]A. D. Cheok and Z. Wang, “Fuzzy Logic Rotor Position Estimation Based Switched Reluctance Motor DSP Drive with Accuracy Enhancement,” IEEE Transactions on Power Electronics, vol. 20, no. 4, pp. 908-921, Jul. 2005.
[25]K.-C. Kim, J. S. Ahn, S. H. Won, J.-P. Hong, and J. Lee, “A Study on the Optimal Design of SynRM for the High Torque and Power Factor,” IEEE Transactions on Magnetics, vol. 43, no. 6, pp. 2543-2545, Jun. 2007.
[26]S. J. Mun, Y. H. Cho, and J. H. Lee, “Optimum Design of Synchronous Reluctance Motors Based on Torque/Volume Using Finite-Element Method and Sequential Unconstrained Minimization Technique,” IEEE Transactions on Magnetics, vol. 44, no. 11, pp. 4143-4146, Nov. 2008.
[27]P. C. Sen and G. Premchandran, “Improved PWM Control Strategy for Inverters and Induction Motor Drives,” IEEE Transactions on Industrial Electronics, vol. IE-31, no. 1, pp. 43-50, Feb. 1984.
[28]D.-W. Chung and S.-K. Sul, “Minimum-Loss Stategy for Three-Phase PWM Rectifier,” IEEE Transactions on Industrial Electronics, vol. 46, no. 3, pp. 517-526, Jun. 1999.
[29]A. Ravindranath, S. K. Mishra, and A. Joshi, “Analysis and PWM Control of Switched Boost Inverter,” IEEE Transactions on Industrial Electronics, vol. 60, no. 12, pp. 5593-5602, Nov. 2012.
[30]N.-V. Nguyen, T.-K. T. Nguyen, and H.-H. Lee,”A Reduced Switching Loss PWM Strategy to Eliminate Common-Mode Voltage in Multilevel Inverters,” IEEE Transactions on Power Electronics, vol. 30, no. 10, pp. 5425-5438, Dec. 2014.
[31]T.-H. Liu and M.-T. Lin, “A Fuzzy Sliding-Mode Controller Design for a Synchronous Reluctance Motor Drive,” IEEE Transactions on Aerospace and Electronic Systems, vol. 32, no. 3, pp. 1065-1076, Jul. 1996.
[32]C. Mademlis, “Compensation of Magnetic Saturation in Maximum Torque to Current Vector Controlled Synchronous Reluctance Motor Drives,” IEEE Transactions on Energy Conversion, vol. 18, no. 3, pp. 379-385, Sept. 2003.
[33]E. Daryabeigi, H. Abootorabi Zarchi, G. R. Arab Markadeh , J. Soltani, and F. Blaabjerg, “Online MTPA Control Approach for Synchronous Reluctance Motor Drives Based on Emotional Controller,” IEEE Transactions on Power Electronics, vol. 30, no. 4, pp. 2157-2166, May 2014.
[34]R. Lagerquist, I. Boldea, and T. J. E. Miller, “Sensorless Control of the Synchronous Reluctance Motor,” IEEE Transactions on Industry Applications, vol. 30, no. 3, pp. 673-682, May/Jun. 1994.
[35]M. S. Arefeen, M. Ehsani, and T. A. Lipo, “Sensorless Position Measurement in Synchronous Reluctance Motor,” IEEE Transactions on Power Electronics, vol. 9, no. 6, pp. 624-630, Nov. 1994.
[36]M.-Y. Wei, T.-H. Liu, and C.-K. Lin, “Design and Implementation of a Passivity-Based Controller for Sensorless Synchronous Reluctance Motor Drive Systems,” IET Electric Power Applications, vol. 5, no. 4, pp. 335-349, Apr. 2011.
[37]T. Tuovinen and M. Hinkkanen, “Signal-Injection-Assisted Full-Order Observer With Parameter Adaptation for Synchronous Reluctance Motor Drives,” IEEE Transactions on Industry Applications, vol. 50, no. 5, pp. 3392-3402, Feb. 2014.
[38]R. S. Rebeiro and M. N. Uddin, “Performance Analysis of an FLC-Based Online Adaptation of Both Hysteresis and PI Controllers for IPMSM Drive,” IEEE Transactions on Industry Applications, vol. 48, no. 1, pp. 12-19, Nov. 2011.
[39]B. Mwinyiwiwa, Z. Wolanski, and B.-T. Ooi, “Microprocessor-Implemented SPWM for Multiconverters with Phase-Shifted Triangle Carriers,” IEEE Transactions on Industry Applications, vol. 34, no. 3, pp. 487-494, May/Jun. 1998.
[40]Q.-T. An, M. H. Duan, L. Sun, and G. L. Wang, “SVPWM Strategy of Post-fault Reconfigured Dual Inverter in Open-end Winding Motor Drive Systems,” Electronics Letters, vol. 50, no. 17, pp. 1238-1240, Aug. 2014.
[41]J. Rodriguez, J. Pontt, C. A. Silva, P. Correa, P. Lezana, P. Cortes, and U. Ammann, “Predictive Current Control of a Voltage Source Inverter,” IEEE Transactions on Industrial Electronics, vol. 54, no. 1, pp. 495-503, Feb. 2007.
[42]C.-K. Lin, T.-H. Liu, J.-t. Yu, L.-C. Fu, and C.-F. Hsiao, “Model-Free Predictive Current Control for Interior Permanent-Magnet Synchronous Motor Drives Based on Current Difference Detection Technique,” IEEE Transactions on Industrial Electronics, vol. 61, no. 2, pp. 667-681, Mar. 2013.
[43]C.-K. Lin, J.-t. Yu, L.-C. Fu, T.-H. Liu, and C.-F. Hsiao, “Model-Free Predictive Current Controller for Four-Switch Three-Phase Inverter-Fed Interior Permanent Magnet Synchronous Motor Drive Systems,” IEEE/ASME International Conference on Advanced Intelligent Mechatronics, pp. 1048-1053, Jul. 2012.
[44]M.-Y. Wei and T.-H. Liu, “A High-Performance Sensorless Position Control System of a Synchronous Reluctance Motor Using Dual Current-Slope Estimating Technique,” IEEE Transactions on Industrial Electronics, vol. 59, no. 9, pp. 3411-3426, Dec. 2011.
[45]L. U. Gökdere and M. A. Simaan, “A Passivity-Based Method for Induction Motor Control,” IEEE Transactions on Industrial Electronics, vol. 44, no. 5, pp. 688-695, Oct. 1997.
[46]W. J. Wang and J. Y. Chen, “Compositive Adaptive Position Control of Induction Motors Based on Passivity Theory,” IEEE Transactions on Energy Conversion, vol. 16, no. 2, pp. 180-185, June 2001.
[47]W. J. Wang and J. Y. Chen, “Passivity-based Sliding Mode Position Control for Induction Motor Drives,” IEEE Transactions on Energy Conversion, vol. 20, no. 2, pp. 316-321, June 2005.
[48]C. I. Byrnes, A. Isidori, and J. C. Willems, “Passivity, Feedback Equivalence, and the Global Stabilization of Minimum Phase Nonlinear Systems,” IEEE Transactions Automatic Control, vol. 36, no. 11, pp. 1228- 1240, Nov. 1991.
[49]F. J. Lin, C. K. Chang, and P. K. Huang, “FPGA-Based Adaptive Backstepping Sliding-mode Control for Linear Induction Motor Drive,” IEEE Transactions on Power Electronics, vol. 22, no. 4, pp. 1222-1231, July 2007.
[50]Y. Xu, “Chattering Free Robust Control for Nonlinear Systems,” IEEE Transactions on Control Systems Technology, vol. 16, no. 6, pp. 1352-1359, Nov. 2008.
[51]R. Shahnazi, H. M. Shanechi, and N. Pariz, “Position Control of Induction and DC Servomotors: A Novel Adaptive Fuzzy PI Sliding Mode Control,” IEEE Transactions on Energy Conversion, vol. 23, no. 1, pp. 138- 147, Mar. 2008.
[52]C. K. Lin, T. H. Liu, and S. H. Yang, “Nonlinear Position Controller Design with Input-Output Linearisation Technique for an Interior Permanent Magnet Synchronous Motor Control System,” IET Power Electronics, vol. 1, no. 1, pp. 14-26, Mar. 2008.
[53]M. A. Rahman, D. M. Vilathgamuwa, N. Uddin, and K. J. Tseng, “Nonlinear Control of Interior Permanent-Magnet Synchronous Motor,” IEEE Transactions on Industry Applicattions, vol. 39, no. 2, pp. 408-416, Mar./Apr. 2003.
[54]M. Krstic, I. Kanellakopoulos, and P. Kokotovic, “Nonlinear and Adaptive Control Design,” New York: John Wiley &; Sons, Inc., 1995.
[55]J.-t. Yu, C.-K. Lin, L.-C. Fu, and T.-H. Liu, “Passivity-Based Adaptive Sliding-Mode Speed Control for IPMSM Drive Systems,” American Control Conference, 2011, pp. 2945-2950, Jun./Jul. 2011.
[56]Texas Instruments, TMS320x280x Digital Signal Processors, 2012.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊