跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.62) 您好!臺灣時間:2025/11/17 00:46
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:李文元
研究生(外文):LEE,WEN-YUAN
論文名稱:隧道開挖無支撐跨距之約束損失預估與分析
論文名稱(外文):Analysis and Estimation of the Confinement Loss Due to Unsupported Span in Tunneling
指導教授:李煜舲
指導教授(外文):LEE, YU-LIN
口試委員:呂志宗許文貴徐增興林銘益
口試委員(外文):LU,CHIH-CHUNGHSU, WEN-KUEIHSU,TSENG-HSINGLIN,MING-YI
口試日期:2017-07-31
學位類別:博士
校院名稱:中華大學
系所名稱:土木工程學系
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:180
中文關鍵詞:收斂約束法隧道開挖無支撐跨距約束損失隧道掘進效應函數隧道計測收斂
外文關鍵詞:Convergence-Confinement MethodUnsupported Span of TunnelingConfinement LossTunnel Advancing Effect FunctionTunnel Measurement Convergence
相關次數:
  • 被引用被引用:0
  • 點閱點閱:244
  • 評分評分:
  • 下載下載:9
  • 收藏至我的研究室書目清單書目收藏:0
在隧道工程施工中,由於隧道工作面之輪進開挖而產生一段無支撐跨距,為保持隧道安全而隨即架上支撐結構,藉以確保隧道持續開挖前進,同時維持圍岩與支撐結構都在穩定狀態之安全範圍內。然而,在隧道工程開挖與支撐之分析設計過程中,此輪進距離或稱無支撐跨距如何轉化為力量損失或位移增加之量化數值,成為一項模糊且不確定之影響因子。為瞭解隧道前進開挖之無支撐距離引致隧道周圍應力改變或位移釋放之量化關係,也就是探討隧道輪進開挖之無支撐跨距與約束損失間之關係,即為本研究之主要目的。
本研究方法包含,首先以收斂約束法理論為基礎,推導隧道開挖無支撐跨距與約束損失之關係,採用雙曲線函數、正切雙曲線函數和指數函數,嘗試建立模擬隧道開挖後計測收斂數據趨勢之隧道掘進效應函數,並以統計迴歸分析方式尋得各個函數中之相關參數,進而建立約束損失曲線,藉以模擬隧道開挖支撐之位移分佈狀態。其次為驗證約束損失曲線之正確性與可行性,本研究採用二維有限元素分析,在不同初始應力狀態下,模擬隧道開挖於彈性或彈塑性之圍岩且分別為無支撐與有支撐情況下之數值計算結果,以及採用公路、鐵路實際隧道開挖計測收斂案例,以平移方法和正規化方式計算隧道掘進效應函數之參數,進而獲得約束損失曲線分佈趨勢與數值之預估。
經由理論分析與計算步驟之執行,本研究獲得之成果有,(1)提出如何建立隧道掘進效應函數及約束損失曲線理論模式之分析方程式﹔(2)提出隧道開挖面上的前期約束損失與隧道開挖無支撐跨距之約束損失之預估方程式﹔(3)探討相關隧道掘進效應函數之參數研究與其影響性,包含隧道開挖面上之前期收斂與收斂斜率變化之探討﹔(4)數值分析結果顯示,隧道圍岩徑向位移經由正規化方式處理,可以消除隧道開挖周圍位置與側向應力比等因子的影響﹔(5)經與實際隧道計測斷面之收斂資料比較結果顯示,以雙曲線函數為隧道掘進函數呈現較為一致的分佈趨勢;(6)依據隧道案例分析結果,驗證本研究提出約束損失分析理論與數值預估方式之可行性,以及達到提供隧道工程分析與設計參考之目的。

In the tunneling construction, since the cycle tunneling may cause a section of unsupported span on tunnel face, thus supporting structure should be set to maintain the tunnel safety, so as to ensure of keeping wall rock and supporting structure to be in a safety range with stable state during continuously advancing. However, in the analysis and design process of tunnel excavation and supporting, the distance of this cycle tunneling or how to transform the unsupported span into the quantified numbers for the force loss or the increase of displacement becomes a fuzzy and uncertain impact factor. In order to understand the quantified relationship between tunnel surrounding stress or displacement release energy that caused by the unsupported distance during the tunnel advancing; that is, the main purpose of this Study intended to investigate the relationship between the unsupported span and confinement loss during the cycle tunneling process.
Methodology of this Study included that adopted the Convergence-Confinement Method theory as the foundation to deduce the relationship between unsupported span and confinement loss during tunneling. In addition, this Study is applied the hyperbolic function, hyperbolic tangent function and exponential function to tend to build the advancing effect function for simulating the convergence tendency on the tunneling measurements, as well as used the statistical Regression Analysis to figure out the relevant parameters for individual function, so as to establish the confinement loss curve to simulate the displacement distribution for the supporting structure during tunneling. Secondly, this Study intended to verify the correctness and feasibility of the confinement loss curve, it adopted the 2D finite element method, within different states of initial stress, to solve the result of measurement calculation of simulating the tunneling in elastic or elastoplastic wall rock with or without supporting. Moreover, this Study used actual cases of measurement convergence for tunneling in highways and railway, and applied the horizontal displacement and normalization to calculate the parameters for the tunnel advancing effect function, and further to obtain the estimation of the distribution tendency and values for the confinement loss curve.
By executing theoretic analysis and calculating procedures, this Study achieved these performances: (1) Proposed how to build the analytic equation of the theoretic model for the tunnel advancing effect function and confinement loss curve; (2) Proposed the estimation equation for the initial confinement loss on tunnel face, and the confinement loss of unsupported span during tunneling; (3) Investigated on those relevant parameters of tunnel advancing effect function and their corresponding influence, including the investigation on the changes between initial convergence and convergence slope on tunnel face; (4) The Numerical results showed that the vertical displacement of tunnel wall rock treated by normalization method which can eliminate the impact of the surrounding locations and the lateral stress ratio during tunneling; (5) After comparing the convergence data of actual tunneling cross-section measurements, it showed the hyperbolic function to have more consistent distribution tendency; (6) According to the analytic results of tunneling cases, it can verify the feasibility of the analysis theory and the numerical estimation method for the confinement loss that proposed in this Study, so as to achieve the goal of being the reference to the analysis and design of tunneling construction.

摘要 i
ABSTRACT iii
致謝 v
目錄 vi
表目錄 ix
圖目錄 x
符號說明 xvii
第一章 緒論 1
1.1 前言 1
1.2 研究背景 1
1.3 研究動機 2
1.4 研究目的 3
1.5 研究內容與架構 3
第二章 文獻回顧 6
2.1 前言 6
2.2 收斂約束法基本理論 6
2.2.1 理論與假設 8
2.2.2 地盤反應曲線 9
2.2.3 支撐特徵曲線 15
2.2.4 隧道開挖與支撐互制行為 21
2.2.5 隧道開挖周圍應力與分佈 22
2.3 外顯分析於收斂約束法之應用 25
2.3.1 現地收斂計測資料 25
2.3.2 縱剖面變形曲線 27
2.3.3 約束損失之假設與分析 30
2.3.4 隧道開挖之前進效應 31
2.3.5 隧道開挖前進效應與時間關係 33
2.4 岩體與結構支撐系統之非線性理論 35
2.4.1 Hoek-Brown非線性岩體破壞準則 35
2.4.2 Oreste非線性支撐方程 39
2.5 隧道開挖與支撐設計方法之相關文獻 40
2.6 統計迴歸分析法 45
2.6.1 統計迴歸原理 45
2.6.2 統計迴歸分析軟體 46
2.6.3 迴歸分析方法 47
2.6.4 迴歸分析之參數推導 48
第三章 約束損失之理論分析與預估 71
3.1 前言 71
3.2 約束損失之物理意義 72
3.3 計測斷面收斂資料之分析 75
3.4 約束損失曲線之建立 78
3.5 隧道掘進效應函數與參數研究 83
3.6 約束損失之推估 92
3.7 有支撐隧道約束損失曲線之建立 94
3.8 驗證 100
3.8.1 約束損失與無支撐跨距之關係 100
3.8.2 無支撐隧道約束損失之預估 107
3.8.3 有支撐隧道約束損失之預估 107
3.9 小結 110
第四章 實際案例分析與探討 130
4.1 前言 130
4.2 公路與鐵路隧道工程與地質背景介紹 130
4.2.1 東西向快速公路八卦山隧道工程與地質概述 130
4.2.2 東部北迴線鐵路隧道工程與地質概述 131
4.3 隧道工程案例與計測斷面資料介紹 135
4.3.1 八卦山卵礫石層隧道工程與計測斷面基本資料 135
4.3.2 東部鐵路變質岩隧道工程與計測斷面基本資料 136
4.4 隧道工程案例之約束損失建立與分析結果 139
4.5 小結 141
第五章 結論與建議 171
5.1結論 171
5.2 建議 173
參考文獻 174

江奉舉(2009),「非靜水應力狀態下隧道收斂約束法之外顯分析」,碩士論文,中華大學土木工程研究所,新竹。
吳淑媛(2001),「軟土隧道襯砌應力與地盤變位之數值分析」,碩士論文,國立中央大學土木工程研究所,桃園。
呂勝能(2005),「互層軟岩隧道分析與支撐探討」,碩士論文,朝陽科技大學營建工程研究所,台北。
李煜舲(2003),「收斂圍束法在新奧隧道工法之分析與應用」,地工技術雜誌,第九十五期,第95-106頁。
李煜舲、李文元(2010),「隧道收斂圍束法地層反應曲線之外顯分析」,中國岩石力學與工程學報,第29卷,增刊2。
李煜舲、林銘益(2004),「台灣東部鐵路單軌隧道開挖支撐互制行為之探討」,中國岩石力學與工程學報,第23卷,第4823-4832頁。
李煜舲、林銘益、許文貴(2008),「三維有限元分析隧道開挖收斂損失與縱剖面變形曲線關係研究」,中國岩石力學與工程學報,第27卷,第2期,第258-265頁。
李煜舲、許文貴、林銘益(2009),「以隧道變形量測資料分析掘進效應與約束損失」,中國岩石力學與工程學報,第28卷,第1期,第39-46頁。
李煜舲、蔡禮鍵、李文元(2013),「非等向應力場隧道前進開挖引致地盤反應行為之外顯分析」,中國土木水利工程學刊,第25卷,第3期,第231-240頁。
李煜舲、賴明宏、林銘益(2011),「隧道開挖支撐收斂約束法之外顯分析」,中國土木水利工程學刊,第23卷,第3期,第245-256頁。
林銘益(2002),「台灣東部變質岩隧道群收斂資料之分析與應用」,碩士論文,中華大學土木工程研究所,新竹。
近滕達敏(1979),「NATM工法變位予測」,應用地質調查事務所年報。
俞旗文(2007),「隧道圍岩力學參數的經驗評估方法」,台灣公共工程學刊,第三卷,第二期。
徐力平(1999),「隧道圍岩力學參數的經驗評估方法」,土木技術,第11期。
陳羿安(2004),「卵礫石層隧道計測資料之分析與應用」,碩士論文,中華大學土木工程研究所,新竹。
陳聖彥(2004),「視窗化收斂圍束法在隧道工程分析與設計之研究」,碩士論文,中華大學土木工程研究所,新竹。
游宗霖(2005),「隧道開挖面接近不連續地質界面之力學行為探討」,碩士論文,國立台灣科技大學營建技術研究所,台北。
黃文彥(1997),「岩石隧道掘進引致應力調整及地拱發展之研究」,博士論文,國立台灣科技大學營建技術研究所,台北。
黃俊傑(2008),「新外顯法在收斂圍束法之應用與研究」,碩士論文,中華大學土木工程系研究所,新竹。
廖信朗(2005),「隧道前期變形量之預測探討」,博士論文,國立台灣科技大學營建技術研究所,台北。
維基百科(2017),https://zh.wikipedia.org/wiki/MATLAB。
劉弘志(2004),「外顯式收斂圍束法在隧道開挖支撐互制行為之研究」,碩士論文,中華大學土木工程系研究所,新竹。
蔡逸智(2001),「三維隧道開挖縱剖面力學行為之研究」,碩士論文,中華大學土木工程研究所,新竹。
蔡禮鍵(2012),「非靜水應力狀態下隧道開挖支撐非線性行為之外顯分析」,碩士論文,中華大學土木工程研究所,新竹。
蘇哲雋(2008),「新奧工法於土壤隧道之開挖行為研究」,博士論文,國立台灣科技大學營建工程技術研究所,台北。
Asef, M.R., Reddish, D.J., and Llotd, P.W., (2000). “Rock-support interaction analysis based on numerical modeling,” Geotechnical and Geological Engineering, Vol. 18, pp. 23-37.
Barton, N., and Shen, B., (1997). “The disturbed zone around tunnels in jointed rock masses,” Int. J. Rock Mech. Min. Sci., Vol. 34, No. 1, pp. 117-125.
Bernat, S., and Cambou, B. (1998). “Soil-structure interaction in shield tunnelling in soft soil,” Geotechnics, Vol. 22, No. 3/4, pp. 221-242.
Bernaud, D., and Rousset, G., (1996). “The ‘New Implicit Method’ for tunnel analysis,” International Journal for Numerical and Analytical Methods in Geomechanics, Vol. 20, No. 9, pp. 673-690.
Bieniawski, Z.T., (1973). “Engineering classification of jointed rock masses,” In Transaction of the South African Institution of Civil Engineers, Vol. 15, pp. 335-344.
Bieniawski, Z.T., (1989). “Engineering rock mass classification,” Wiley, New York, pp. 251.
Carranza-Torres, C., and Fairhurst, C., (2000). “Application of the convergence - Confinement method of tunnel design to rock masses that satisfy the Hoek-Brown failure criterion,” Tunnelling and Underground Space Technology, Vol. 16, No. 2, pp. 187-213.
Carranza-Torres, C., (2004). “Elasto-plastic solution of tunnel problems using the generalized form of the Hoek-Brown failure criterion,” International Journal of Rock Mechanics and Mining Sciences, Vol. 41, No. 3, pp. 629-639.
De Farias, M.M., Junior, A.H.M., and De Assis, A.P., (2004). “Displacement control in tunnels excavated by the NATM: 3-D numerical simulations,” Tunnelling and Underground Space Technology, Vol. 19, pp. 283-293.
Egger, P., (2000). “Design and construction aspects of deep tunnels (with particular emphasis on strain softening rocks),” Tunnelling and Underground Space Technology, Vol. 15, No. 4, pp. 403-408.
Franzen, T., (1992). “Invited lecture: Shotcrete for underground support – A state of the art report with focus on steel fibre reinforcement. Rock support in mining and underground construction,” Sudbury, Ontario, Canada. 16-19/6/1992 Balkema, Rotterdam, pp. 91–104.
Gonzalez-Nicieza, C., Alvarez-Vigil, A.E., Menendez-Diaz, A., and Onzalez-Placio, C., (2008). “Influence of the depth and shape of a tunnel in the application of the convergence - confinement method,” Tunnelling and Underground Space Technology, Vol. 23, No. 1, pp. 25-37.
Hoek, E., and Brown, E.T., (1997). “Practical estimates of rock mass strength,” International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, Vol. 34, No. 8, pp. 1165-1186.
Hoek, E., and Brown, E.T., (1988). “The Hoek-Brown failure criterion - a 1988 update,” Proc. 15th Canadian Rock Mech. Symp. (ed. J.C. Curran), Toronto, Dept. Civil Engineering, University of Toronto, pp. 31-38.
Hoek, E., Carranza-Torres, C., and Corkum, B., (2002). “The Hoek-Brown failure criterion - 2002 edition,” Proc. NARMS-TAC Conference, Toronto, pp. 267-273.
Hoek, E., and Diederichs, M.S., (2006). “Empirical estimation of rock mass modulus,” International Journal of Rock Mechanics & Mining Sciences, Vol. 43, pp. 203-215.
Hoek, E., (1983). “Strength of jointed rock masses,” Geotechnique, Vol. 33 No. 3, pp. 187-223.
Hoek, E., (1990). “Estimating Mohr-Coulomb friction and cohesion values from the Hoek-Brown failure criterion,” International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, Vol. 27, No. 3, pp. 227-229.
Hoek, E., and Brown, E.T., (1980). Underground Excavation in Rock, The Institution of Mining and Metallurgy London, England.
Hoek, E., Marinos, P., and Benissi, M., (1998). “Applicability of the geological strength index (GSI) classification for very weak and sheared rock masses. The case of the Athens Schist Formation,” Bulletin of Engineering Geology and the Environment, Vol. 57, No. 2, pp. 151-160.
Hoek, E., Wood, D., and Shah, S., (2003). “A modified Hoek-Brown criterion for jointed rock masses,” Proc. Rock Characterization, Symp. Int. Soc. Rock Mech.: Eurock ‘92, (ed. J.A. Karakus M., Fowell R.J, “Effects of different face advance excavation on the settlement by FEM.” Tunnelling and Underground Space Technology, No. 18, pp. 513-523.
Lee, Y.L., (1994). “Prise en compte des non-linéarité de comportement des sols et roches dans la modélisation du creusement d’un tunnel,” Ph.D. Dissertation, Département de Génie Civil, Ecole Nationale des Ponts et Chaussées, Paris, France.
Lee, Y.L., Hsu, W.K., Lee, W.Y., and Tsai, L.J., (2014). “Estimation of Confinement Loss by Using Convergence Data in Tunneling,” Analysis, Design, and Construction of Tunnels and Underground Structures GSP 247 © ASCE 2014, GeoHubei2014, ASCE Geotechnical Special Publications, 22~24, July, 2014, Hubei, China.
Leu, S.S., Chen, A.T., and Yang, C.H, (2001). “A GA-based fuzzy optimal model for construction time-cost trade-off.” Int. J. Project Mgmt., Vol. 19, pp. 47-58.
Lombardi, G., (1973). “Dimensionning of tunnel linings with regard to constructional procedure,” Tunnels and Tunneling, July.
Marcio Muniz de Farias, Alvaro Henrique Moraes Junior, and Andre Pacheco de Assis, (2004). “Displacement control in tunnels excavated by the NATM: 3-D numerical simulations,” Tunnelling and Underground Space Technology, Vol. 19, No. 3, pp. 283-293.
Oreste, P.P., (2003a). “Analysis of structural interaction in tunnels using the convergence confinement approach,” Tunnelling and Underground Space Technology, Vol. 18, No. 4, pp. 347-363.
Oreste, P.P., (2003b). “A procedure for determining the reaction curve of shotcrete lining considering transient conditions,” Rock Mech. Rock Engng., Vol. 36, No. 3, pp. 209-236.
Oreste, P.P., (2007). “A numerical approach to the hyperstatic reaction method for the dimensioning of tunnel supports,” Tunnelling and Underground Space Technology, Vol. 22, pp. 185-205.
Oreste, P.P., and Peila, D., (1995). “Axisymmetric analysis of ground reinforcing in tunnelling design,” Computers and Geotechnics, Vol. 17, pp. 253-274.
Oreste, P.P., and Peila, D., (1996). “Radial passive rockbolting in tunneling design with a new convergence-confinement model,” International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, Vol. 33, No. 5, pp. 443-454.
Oreste, P.P., and Peila, D., (1997). “Modelling progressive hardening of shotcrete in convergence-confinement approach to tunnel design,” Tunnelling and Underground Space Technology, Vol. 12, No. 3, pp. 425-431.
Pacher, F., (1964). “Deformations messungen in Versuchsstollen als Mittel Zur Erfoschung des Gebirgs verhaltens und zur Bemessung des Ausbaues,” Felsmechanik und lngenieursgeologie, Supplementum Ⅳ.
Panet, M., (1979). “Les deformations diferees dans les ourages souterrains,” 4th ISMR Conf., Montreux 1979, Vol. III, pp. 291-301.
Panet, M., (1993). “Understanding deformations in tunnels,” Comprehensive Rock Engineering Principles-Practice and Projects, in Hudson, New York, Pergamon Press.
Panet, M., (1995). Calcul des Tunnels par la methode de Convergence-Confinement, Press de l’ecole Nationale des Ponts et Chaussees, Paris.
Panet, M., (2001). “Recommendations on the convergence-confinement method,” AFTES.
Sakurai, S., and Takeuchi, K., (1983). “Back analysis of measured displacements of tunnels,” Rock Mechanics and Rock Engineering, Vol. 16, pp. 173-180.
Sakurai, S., Akutagawa, S., Takeuchi, K., Shinji, M., and Shimizu, N., (2003). “Back analysis for tunnel engineering as a modern observational method,” Tunnelling and Underground Space Technology, Vol. 18, pp. 185-196.
Soroosh, A., Foroozan, R., and Asadollahi, P., (2006). “Simulation of 3D effect of excavation face advancement using a neural network trained by numerical models,” Tunnelling and Underground Space Technology, Vol. 21, pp. 375.
Sulem, J., Panet, M., and Guenot, A., (1987). “Closure Analysis in Deep Tunnels,” Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., Vol. 24, No. 3, pp. 145-154.
Unlu, T., and Gercek, H., (2003). “Effect of Poisson’s ratio on the normalized radial displacements occurring around the face of a circular tunnel,” Tunnelling and Underground Space Technology, Vol. 18, pp. 547-553.
Vardakos, S., and Gutierrez, M., (2006). “Simplified parameter identification for circular tunnels,” Tunnelling and Underground Space Technology, Vol. 21, pp. 372.
Vlachopoulos, N., and Diederichs, M.S., (2009). “Improved longitudinal displacement profiles for convergence confinement analysis of deep tunnels,” Rock Mech. & Rock Eng., Vol. 42, No. 2, pp. 131-146.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top