1.Ahn, Y. H. and Speece, R. E. (2006). Elutriated acid fermentation of municipal primary sludge. Water Research, 40(11), 2210-2220.
2.Aquino, S. F. and Stuckey, D. C. (2004a). The effect of organic and hydraulic shock loads on the production of soluble microbial products in anaerobic digesters. Water Environmental Research, 76, 2628-2636.
3.Aquino, S. F. and Stuckey, D. C. (2008). Integrated model of the production of soluble microbial products (SMPs) and extracellular polymeric substances (EPS) in anaerobic chemostats during transient conditions. Biochemical Engineering, 38, 138-146.
4.Aquino, S. F., Gloria, R. M., Silva, S. Q., Chernicharo, C. A. L (2009). Quantification of the Inert Chemical Oxygen Demand of Raw Wastewater and Evaluation of Soluble Microbial Product Production in Demo-Scale Upflow Anaerobic Sludge Blanket Reactors under Different Operational Conditions. Water Environment Research, 81(6), 608-616.
5.Aquino, S. F., Stuckey, D. C. (2004b). Soluble microbial products formation in anaerobic chemostats in the presence of toxic compounds.Water Research, 38, 255-266.
6.Altaş L. (2009). Inhibitory effect of heavy metals on methane-producing anaerobic granular sludge. Journal of Hazardous Materials, 162, 1551-1556.
7.Barker, D. J. and Stuckey, D. C. (1999). A review of soluble microbial products (SMPs) in wastewater treatment systems. Water Research, 33(14), 3063-3082.
8.Boero, V. J., Eckenfelder, Jr. W. W. and Bowers, A. R. (1996). Molecular weight distribution of soluble microbial products in biological systems. Water Science Technology, 34(5-6), 241-248.
9.Barker, D. J., Mannucchi, G. A., Salvi, S. M. L. and Stuckey, D. C. (1999). Characterisation of soluble residual chemical oxygen demand (COD) in anaerobic wastewater treatment effluents. Water Research, 33(11), 2499-2510
10.Barker, D. J. and Stuckey, D. C. (2001). Modelling of soluble microbial products in anaerobic digestion:the effect of feed strength and composition. Water Environmental Research, 73(2), 173-184.
11.Bagby, M. M. and Sherrard, J. H. (1981). Combined effects of cadmium and nickel on the activated sludge process. Water Pollution Control Federation, 53(11), 1609-1619.
12.Battistoni, P. Fava, G. and Ruello, M. L. (1993). Heavy metal shock load in activated sludge uptake and toxic effects. Water Research, 27, 821-827.
13.Burton, K. (1956). A study of the conditions and mechanism of the diphenylamine reaction for the colorimetric estimation of deoxyribonucleic acid. Biochemical,62 ,315-323.
14.Brdjanovic, D., Van Loosdrecht, M. C. M., Hooijmans, C. M., Mion, T., Alaerts, G. J. and Jeijnen, J. J. (1998). Bioassay for glycogen determination in biological phosphorus removal systems. Water Science Technology, 37, 541-547.
15.Comeau, Y., Hall, K. J., Hancock, R. E. W. and Oldham, W. K. (1986). Biochemical model enhanced biological phosphorus removal. Water Research, 20(12), 1511-1521.
16.Cech, J. S. and Hartman, P. (1990). Glucose induced break-down of enhanced biological phosphate removal. Environmental Technology, 11, 651-656.
17.Chang, W. C., Chiou, R. J. and Ouyang, C. F. (1996). The effect of residual substrate utilisation on sludge settling in an enhanced biological phosphorus removal process. Water Science Technology, 34 (1-2), 425-430.
18.Converti, A., Zilli, M., Poloniecki, R. H., Del Borghi, M. and Ferraiolo, G. (1993). Influence of nutrient concentration in new operating criteria for biological removal of phosphorus from wastewaters. Water Research, 27(5), 791-798.
19.Cech, J. S. and Hartman, P. (1993). Competition between polyphosphate and polysaccharide accumulating bacteria in enhanced biological phosphate removal systems. Water Research, 27(7), 1219-1225.
20.Carucci, A., Kuhni, M., Brun, R., Carucci, G., Koch, G., Majone, M. and Siegrist, H. (1999). Microbial competition for the organic substrates and its impact on EBPR systems under conditions of changing carbon feed. Water Science Technology, 39(1), 75-85.
21.Chung, K. Y., Han, S. S., Kim, H. K., Choi, G. S., Kim, I. S., Lee, S. S., Woo, S. H., Lee, K. H. and Kim, J. J. (2006). Inhibitory Effect of the Selected Heavy Metals on the Growth of the Phosphorus Accumulating Microorganism, Acinetobacter sp. Korean Journal of Environmental Agriculture, 25(1), 40-46.
22.Chudoba, J. (1967). Residual organic matter in activated sludge process effluents. I. Degradation of saccharides, fatty acids and amino acids under batch conditions. Scientific Papers of the Institute of Chemical Technology (Czech). Technology, Water. F12, 39-75.
23.Chudoba, J. (1985). Inhibitory effect of refractory organic compounds produced by activated sludge microorganisms on microbial activity and occulation.Water Research. 19(2), 197-200.
24.Çeçen, F., Semerci, N., Geyik, A. G. (2010) Inhibition of respiration and distribution of Cd, Pb, Hg, Ag and Cr species in a nitrifying sludge. Journal of Hazardous Materials, 178, 619-627.
25.Codina, J. C., Munoz, M. A., Cazorla, F. M., Perez-Garcia, A., Morinigo, M. A. and De Vicente, V. (1998). The inhibition of methanogenic activity from anaerobic domestic sludges as a simple toxicity bioassay. Water Research, 32, 1338-1342.
26.Chung, K. Y., Han, S. S, Kim, H. K., Choi, G. S., Kim, I. S., Lee, S. S., Woo, S. H., Lee, K. H., Kim, J. J. (2006). Inhibitory effect of the selected heavy metals on the growth of the phosphorus accumulating microorganism, Acinetobacter sp.. Korean Journal of environmental agriculture, 25(1), 40-46.
27.Colussi, I., Cortesi, A., Vedova, L.D., Gallo, V. and Cano Robles, F. K. (2009). Start-up procedures and analysis of heavy metals inhibition on methanogenic activity in EGSB reactor. Bioresource Technology, 100, 6290-6294.
28.Comeau, Y., Hall, K. J., Oldham, W. K. (1988). Determination of Poly-β-hydroxybutyrate and Poly-β-hydroxyvalerate in Activated Sludge by Gas-Liquid Chromatography. Applied Environmental Microbiology, 54, 2325-2327.
29.Danesh, S. and Oleszkiewicz, J.A. (1997). Use of a new anaerobic–aerobic sequencing batch reactor system to enhance biological phosphorus removal. Water Science Technology, 35(1), 137-144.
30.Eckenfelder, Jr. W. W. and Musterman, J. L. (1995). Activated sludge treatment of industrial wastewater. Technomic Publishing Company, Inc.
31.Filipe, C. D. M., Daigger, G. T. and Grady, C. P. L. J. (2001). A metabolic model for acetate uptake under anaerobic conditions by glycogen accumulating organisms: stoichiometry, kinetics and the effect of pH. Biotechnology Bioengineering, 76(1) 17-31.
32.Florentz, M., Caille, D., Bourdon, F. and Sibony, J. (1987). Biological phosphorus removal in France. Water Science Technology, 19(4), 1171–1173.
33.Fang, H. H. P., Jia, X. S. (1998). Soluble microbial products (SMPs) of Acetotrophic Methanogenesis, Bioresource Technology, 66, 235-239.
34.Gaffney, F., Heukelekian, H. (1961). Biochemical oxidation of the lower fatty acids. Water Pollution Control Federation, 11, 1169-1184.
35.Grady, C. P. L. Jr. and Williams, D. R. (1975). Effects of influent substrate concentration on the kinetics of natural microbial populations in continuous culture. Water Research,9 , 171-180.
36.Gaudy Jr, A. F. and Blachly, T. R. (1985). A study of the biodegradability of residual COD. Water Pollution Control Federation, 57(4), 332-338.
37.Gikas. P. (2007). Kinetic responses of activated sludge to individual and joint nickel (Ni(II)) and cobalt (Co(II)): an isobolographic approach. Journal of Hazardous Materials, 143, 246-256.
38.Gikas, P. (2008). Single and combined effects of nickel (Ni(II)) and cobalt (Co(II)) ions on activated sludge and on other aerobic microorganisms: a review. Journal of Hazardous Materials, 159, 187-203.
39.Hejzlar, J. and Chudoba, J. (1986). Microbial polymers in the aquatic environment: I. Production by activated sludge microorganisms under different conditions. Water Research, 20(10), 1209-1216.
40.Herbert, D., Philipps, P. J. and Strange, R. E. (1971). Carbohydrate analysis. Methods Enzymol, 5B, 265-277.
41.Ichihashi, O., Satoh, H., Mino, T. (2006). Effect of soluble microbial products on microbial metabolisms related to nutrient removal. Water Research. 40,1627-1633.
42.Kim, D.S., Jung, N. S. and Park, Y. S. (2008). Korean Journal of Chemical Engineering, Characteristics of nitrogen and phosphorus removal in SBR and SBBR with different ammonium loading rates. Korean Journal of Chemical Engineering, 25(4), 793-800.
43.Kuo, W. C., Sneve, M. A. and Parkin, G. F. (1996). Formation of soluble microbial products during anaerobic treatment. Water Environmental Research, 68, 279-285.
44.Kuo, W. C. and Parkin, G. F. (1996) Characterization of soluble microbial products from anaerobic treatment by molecular weight distribution and nickel-chelating properties. Water Research, 30(4), 915-922.
45.Kuo, W. C., Sneve, M. A. and Parkin, G. F. (1996). Formation of soluble microbial products during anaerobic treatment. Water Environmental Research, 68, 279-285.
46.Liu, W. T., Marsh, T. L. and Forney, L. J. (1998). Determination of the microbial diversity of anaerobic-aerobic activated sludge by a novel molecular biological technique. Water Science Technology, 37(4-5), 417-422.
47.Laspidou, C. S. and Rittmann, B. E. (2002). A unified theory for extracellular polymeric substances, soluble microbial products, and active and inert biomass. Water Research, 36, 2711-2720.
48.Labbs, C., Amy, G. and Jekel, M. (2006). Understanding the size and character of fouling-causing substances from effluent organic matter (EfOM) in low-pressure membrane filtration. Environmental Science Technology, 40, 4495-4499.
49.Laera, G., Pollice A., Saturno D., Giordano, C. and Lopez, A. (2005). Zero net growth in a membrane bioreactor with complete sludge retention. Water Research, 39 (20), 5241-5249.
50.Lin, C. Y. and Chen, C. C. (1999). Effect of heavy metals on the methanogenic UASB granule. Water Research, 33, 409-416.
51.Lin, Y. M., Yang, X. F. and Liu, Y. (2003). Kinetic responses of activated sludge microorganisms to individual and joint copper and zinc. Journal of Environmental Science and Health, 38(2), 353-360.
52.Lowry, O.H., Rosebrough, N.J., Farr, A.L. and Randall, R.J. (1951). Protein measurement with the Folin phenol reagent. Biological Chemistry, 193, 265-271.
53.Mino, T., Liu, W. T., Satoh, H. and Matsuo, T. (1996). Possible metabolisms of polyphosphate accumulating organisms (PAOs) and glycogen accumulating non-poly-P organisms (GAOs) in the enhanced biological phosphate removal process. Med. Fac. Landbouww. Univ. Gent 61/4a, 1769-1776.
54.Mino, T., Van Loosdrecht, M. C. M. and Hejjnen, J. J. (1998). Microbiology and biochemistry of the enhanced biological phosphate removal process. Water Research, 32(11), 3193-3207.
55.Mino, T., Arun, V., Tsuzuki, Y. and Matsuo, T. (1987). Effect of phosphorus accumulation on acetate metabolism in the biological phosphate removal process. In: Ramadori R (ed) Biological phosphate removal from wastewater. Pergamon Press, Oxford, 27-38.
56.Maurer, M., Gujer, W., Hany, R. and Bachman, S. (1997). Intracellular carbon flow in phosphorus accumulating organisms from activated sludge systems. Water Research, 31(4), 907-917.
57.Mino, T., Liu, W. T., Kurisu, F. and Matsuo, M. (1995). Modelling glycogen storage and denitrification capability of microorganisms in enhanced biological phosphate removal processes. Water Science Technology, 31(2), 25-34.
58.Mulkerrins, D., Dobson, A. D. W. and Colleran, E. (2004). Parameters affecting biological phosphate removal from wastewaters, Environmental International, 30, 249-259.
59.Mulkerrins, D., Dobson, A. D. W. and Colleran, E. (2004). Parameters affecting biological phosphate removal from wastewaters, Environmental International, 30, 249-259.
60.McCarthy, P. L. (1964). Anaerobic waste treatment fundamentals, part III. Toxic materials and their control. Public Works 95(11), 91-94.
61.Madoni, P., Davoli, D. and Guglielmi, L. (1999). Response of SOUR and AUR to heavy metal contamination in activated sludge. Water Research, 33, 2459-2464.
62.Namkung, E. and Rittmann, B. E. (1986). Soluble microbial products (SMPs) formation kinetics by biofilms. Water Research, 20(6), 795-806.
63.Noguera, D. R., Araki, N. and Rittmann, B. E. (1994). Soluble microbial products (SMPs) in anaerobic chemostats. Biotechnology Bioengineering, 44, 1040-1047.
64.Nielsen, P.H., Jahn, A. and Palmgren, R. (1997) Conceptual model for production and composition of exopolymers in biofilms. Water Science Technology, 36(1), 11-19.
65.Ni, B. J., Zeng, R. J., Fang, F., Xie, W. M., Sheng, G. P. and Yu, H. Q. (2010). Fractionating soluble microbial products in the activated sludge process. Water Research,44(7), 2292-2302.
66.Noguera, D. R., Araki, N. and Rittmann, B. E. (1994). Soluble microbial products (SMPs) in anaerobic chemostats. Biotechnology Bioengineering. 44, 1040-1047.
67.Oehmen, A., Vives, M. T., Lu, H., Yuang, Z. and Keller, J. (2005). The effect of pH on the competition between polyphosphate-accumulation organisms and glycogen-accumulation organisms. Water Research, 39, 3727-3737.
68.Obayashi, A. W. and Gaudy Jr, A.F. (1973). Aerobic digestion of extracellular microbial polysaccharides. Water Pollution Control Federation, 45, 1584-1594.
69.Ong, S. A., Toorisaka, E., Hirata, M. and Hano, T. (2005). The behaviour of Ni(II), Cr(III), and Zn(II) in biological wastewater treatment process. Acta hydrochimica et hydrobiologica, 33(2), 95-103.
70.Pereira, H., Lemos, P. C., Reis, M. A. M., Crespo, J. P. S. G., Carrondo, M. J. T. and Santos, H. (1996). Model for carbon metabolism in biological phosphorus removal process based on in vivo C13-NMR labeling experiments. Water Research, 30(9), 2128-2138.
71.Panswad, T., Doungchai, A. and Anotai, J. (2003). Temperature effect on microbial community of enhanced biological phosphorus removal system. Water Research, 37(2), 409-415.
72.Pitman, A. R. (1999). Management of biological nutrient removal plant sludges-change the paradigms?. Water Research, 33(5), 1141-1146.
73.Parkin, G. F. and McCarty, P. L. (1981a). A comparison of the characteristics of soluble nitrogen in untreated and activated sludge treated wastewaters. Water Research, 15,139-149.
74.Parkin, G. F. and McCarty, P. L. (1981b). Production of soluble organic nitrogen during activated sludge treatment. Water Pollution Control Federation, 53(1), 99-112.
75.Panswad, T., Tongkhammak, N. and Anotai, J. (2007). Estimation of intracellular phosphorus content of phosphorus-accumulating organisms at different P:COD feeding ratios. Journal of Environmental Management, 87, 141-145.
76.Parkin, G. F. and McCarty, P. L. (1981c). Sources of soluble organic nitrogen in activated sludge effluents. Water Pollution Control Federation, 53(1), 89-98.
77.Pribyl, M., Tucek, F., Wilderer, P. A. and Wanner, J. (1997). Amount and nature of soluble refractory organics produced by activated sludge microorganisms in sequencing batch and continuous flow reactors. Water Science Technology, 35(1), 27-34.
78.Rossetti, S., Carucci, A. and Rolle, E. (1994). Survey of the occurrence of filamentous organisms in municipal wastewater treatment plants related to their operating conditions. Water Science Technology, 29(7), 305-308.
79.Rickard, L. F. and McClintock, S. A. (1992). Potassium and Magnesium requirements for enhanced biological phosphorus removal from waster-water. Water Science Technology, 26(9-11), 2203-2206.
80.Randall, A. A., Benefield, L. D. and Hill, W. E. (1997). Induction of phosphorus removal in an enhanced biological phosphorus removal bacterial population. Water Research, 31(11), 2869-2877.
81.Ruel, S. M., Comeau, Y., Heduit, A., Deronzier, G., Ginestet, P. and Audic, J. M. (2002). Operating conditions for the determination of the biochemical acidogenic potential of wastewater. Water Research, 36, 2337-2341.
82.Rickard, L. F. and McClintock, S. A. (1992). Potassium and Magnesium requirements for enhanced biological phosphorus removal from waster-water. Water Science Technology, 26(9-11), 2203-2206.
83.Rittmann, B. E., Bae, W., Namkung, E. and Lu, C. J. (1987). A critical evaluation of microbial product formation in biological processes. Water Science Technology, 19, 517-528.
84.Rittmann, B. E. and McCarty, P. L. (2001). Environmental Biotechnology: principles and applications. McGraw-Hill, New York.
85.Ramesh, L. D. J. and Hong, S .G. (2006). Soluble microbial products (SMPs) and soluble extracellular polymeric substances (EPS) from wastewater sludge. Applied Microbiology and Biotechnology, 73, 219–225.
86.Ramdani, A., Dold, P., Déléris, S., Lamarre, D., Gadbois, A. and Comeau, Y. (2010). Biodegradation of the endogenous residue of activated sludge. Water Research, 44(7), 2179-2188.
87.Rappaport, S. M., Richard, M. G., Hollstein, M. C. and Talcott, R. E. (1979). Mutagenic activity in organic wastewater concentration. Environmental Science Technology, 13, 957-961.
88.Ross, N., Deschenes, L., Bureau, J., Clement, B., Comeau, Y. and Samson, R. (1998). Ecotoxicological assessment and effects of physicochemical factors on biofilm development in groundwater conditions. Environmental Science Technology, 32, 1105-1111.
89.Shehab, O., Deininger, R., Porta, F. and Wojewski, T. (1996). Optimising phosphorus removal at the Ann Arbor wastewater treatment plant. Water Science Technology, 34, (1-2), 493-499.
90.Scruggs, C. E. and Randall, C. W. (1998). Evaluation of filamentous microorganism growth factors in an industrial wastewater activated sludge system. Water Science Technology, 37(4-5), 263-270.
91.Smolders, G. J. F., Van Loosdrecht, M. C. M. and Heijnen, J. J. (1994). pH: key factor in the biological phosphorus removal process. Water Science Technology, 29(7), 71-74.
92.Schuler, A. J. and Jenkins, D. (2002). Effects of pH on enhanced biological phosphorus removal metabolisms. Water Science Technology, 46,(4-5), 171-178.
93.Satoh, H., Ramey, W. D., Koch, F. A., Oldham, W. K., Mino, T. and Matsuo, T. (1996). Anaerobic substrate uptake by the enhanced biological phosphorus removal activated sludge treating real sewage. Water Science Technology, 34(4), 8-15.
94.Sibera, S. and Eckenfelder, W. W. Jr. (1980). Effluent quality variation from multicomponent substrates in the activated sludge process. Water Research, 14(5), 471-476.
95.Schiener, P., Nachaiyasit, S. and Stuckey, D. C. (1998). Production of soluble microbial products (SMPs) in an anaerobic ba‚ed reactor: composition, biodegradability and the effect of process parameters. Environmental Technology, 19, 391-400.
96.Sotemann, S. W., Ristow, N.E., Wentzel, M. C. and Ekama, G. A. (2005). A steady state model for anaerobic digestion of sewage sludges. Water SA, 31, 511-528.
97.Sujarittanonta, S. and Sherrard, J. H. (1981). Activated sludge nickel toxicity studies. Water Pollution Control Federation, 53, 1314-1322.
98.Su, M. C., Cha, D. K. and Anderson, P. R. (1995). Influence of selector technology on heavy metal removal by activated sludge: secondary effects of selector technology. Water Research, 29, 971–976.
99.Sheng, G. P., Yu, H. Q., Yue, Z. B. (2005). Production of extracellular polymeric substances from rhodopseudomonas acidophila in the presence of toxic substances. Applied Microbiology Biotechnology, 69, 216-222.
100.Tasli, R., Artan, N. and Orhon, D. (1997). The influence of different substrates on enhanced biological phosphorus removal in a sequencing batch reactor. Water Science Technology, 35, 75-80.
101.Thomas, M., Wright, P., Blackall, L., Urbain, V. and Keller, J. (2003). Optimisation of Noosa BNR plant to improve performance and reduce operating costs. Water Science Technology, 47(12), 141-148.
102.Tsai, C. S. and Liu, W. T. (2002). Phylogenetic and physiological diversity of tetrad-forming organisms in deteriorated biological phosphorus removal systems. Water Science Technology, 46(1-2), 179-184.
103.Tchobanoglous, G., Burton, F.L. and Stensel, H.D. (2003). Wastewater Engineering: Treatment and Reuse (4th ed). McGraw-Hill Higher Education, New York.
104.Ting, Y. P., Imai, H. and Kinoshita, S. (1994). Effect of shock-loading of heavy metals on total organic carbon and phosphate removal in an anaerobic-aerobic activated sludge process. World Journal of Microbiology and Biotechnology, 10, 308.312.
105.Tsai, Y. P., You, S. J., Pai, T. Y., Chen, K. W. (2006). Effect of Cd(II) on different bacterial species present in a single sludge process for carbon and nutrient removal. Journal of Environmental Engineering, 132, 173-180.
106.Vyrides, I., Stuckey, D. C. (2009). Effect of fluctuations in salinity on anaerobic biomass and production of soluble microbial products (SMPs). Biodegradation, 20, 165-175.
107.Wentzel, M. C., Lotter, L. H. and Loewenthal, R. E. (1986). Metabolic behavior of Acinetobacter spp. in enhanced biological phosphorus removal-A biochemical model. Water SA,12(4), 209-223.
108.Wentzel, M.C., Lotter, L.H. and Ekama, G. A. (1991). Evaluation of biochemical models for biological excess phosphorus removal .Water Science Technology, 23, 567-576.
109.Whang, L. M. and Park, J. K. (2002). Competition between polyphosphate- and glycogen-accumulating organisms in biological phosphorus removal systems-effect of temperature. Water Science Technology, 46, 191-194.
110.Wingender, J., Neu, T. R. and Flemming, H.C. (1999). Microbial Extracellular Polymeric Substances:Characterization, Structures and Function. Springer-Verlag, Berlin Heidelberg, Chapter 3.
111.Weber, S. and Sherrard, J. H. (1980). Sherrard .Effects of cadmium on the completely mixed activated sludge. Water Pollution Control Federation, 52(9), 2378-2388.
112.Wang, X. H., Gai, L. H., Sun, X. F. Xie, H. J., Gao, M. M. and Wang, S. G. (2010). Effects of long-term addition of Cu(II) and Ni(II) on the biochemical properties of aerobic granules in sequencing batch reactors. Applied Microbiology Biotechnology, (86), 1967-1975.
113.Yagci, O.N., Artan, N., Ubay, C.E., Randall, C.W. and Orhon, D. (2003). Metabolic model for acetate uptake by a mixed culture of phosphate- and glycogen-accumulating organisms under anaerobic conditions. Biotechnology Bioengineering, 84(3), 359-373.
114.You, S. J., Tsai, Y. P. and Huang, R. Y. (2009). Effect on heavy metal on nitrification performance in different activated sludge process. Journal of hazardous materials, 165, 987-994.
115.Yetis, U. and Gokcay, C. F. (1989). Effect of Nickel (II) on activated sludge, Water Research, 23, 1003-1007.
116.Zeng, R. J., Yuan, Z. and Keller, J. (2006). Effects of solids concentration, pH and carbon addition on the production rate and composition of volatile fatty acids in prefermenters using primary sewage sludge. Water Science Technology, 53(8), 263-269.
117.Zhang, X., Bishop, P. and Kinkle, B. (1999). Compariso n of extraction methods for quantifying extracellular polymers in biofilms. Water Science Technology, 39, 211-218.
118.台灣地區民國96年工業用水量統計報告。(2008)。經濟部水利署。
119.吳政鴻(2009),不同環境壓力條件下生物除磷系統溶解性微生物產物之生成及其對除磷效能之影響,碩士論文,國立雲林科技大學環境與安全工程研究所,斗六市。120.陳建衡(2006),溶解性微生物產對生物除磷系統之影響,碩士論文,國立雲林科技大學環境與安全工程研究所,斗六市。121.陳健民(民91)。環境毒物學。新文京。
122.羅博童(1993),化學沉澱法去除重金屬鉛離子時沉降顆粒粒徑的影響與控制研究,國立中興大學環境工程研究所碩士論文,台中市。123.羅時斌(2007),不同SRT下溶解性微生物產對生物除磷系統之影響,碩士論文,國立雲林科技大學環境與安全工程研究所,斗六市。