跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.213) 您好!臺灣時間:2025/11/13 02:51
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳家福
研究生(外文):Jia-Fu Chen
論文名稱:重金屬對生物除磷系統除磷效能及溶解性微生物產物生成之影響
論文名稱(外文):Influences of Heavy Metals on the Phosphate Removal Efficiency and the Formation of Soluble Microbial Products in EBPR System
指導教授:張維欽張維欽引用關係
指導教授(外文):Wei-Chin Chang
學位類別:碩士
校院名稱:國立雲林科技大學
系所名稱:環境與安全工程系碩士班
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:126
中文關鍵詞:重金屬溶解性微生物產物加強生物除磷
外文關鍵詞:heavy metalsoluble microbial products (SMPs)enhanced biological phosphorus removal (EBPR)
相關次數:
  • 被引用被引用:0
  • 點閱點閱:276
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
化學材料、金屬加工及電子業等工業之製程廢水皆含有高濃度重金屬,此類廢水須由業主自行前處理後再排入園區內污水處理廠。若業主進行的處理流程不完善,則會造成微量重金屬流入污水處理廠,影響園區處理廠處理效率,導致其出流水BOD、COD及營養鹽超過放流水標準。因高濃度重金屬會造成處理系統內微生物衍生溶解性微生物產物(soluble microbial products, SMPs),而SMPs組成複雜且不易生物分解。故系統中若有SMPs累積現象,出流水BOD及COD濃度將因而升高。過往雖已有學者針對重金屬對生物除碳及脫氮之影響進行研究,然至現今鮮少同時針對重金屬對生物除磷及SMPs生成之影響進行深入探討。
本研究先建立一座乙酸馴養之厭氧/好氧SBR (Anoxic/Oxic SBR) (Seeding-SBR)系統,待系統水質穩定後,取用其富磷污泥,再設置兩座以鎳(簡稱Ni-SBR)及鎘(簡稱Cd-SBR)為長期進料之SBR系統,藉以觀察富磷污泥對重金屬鎳及鎘之耐受程度,此後再停止重金屬之添加,以觀察富磷污泥磷代謝行為之回復情形。實驗結果顯示,Ni-SBR於0.5mg/L之鎳進料濃度下,短期內其富磷污泥之除磷能力即明顯降低,但其出流水SMPs濃度則未有累積現象。當除去其重金屬之添加後,除磷系統中磷蓄積菌(phosphate-accumulating organisms, PAOs)代謝行為無法恢復,而肝醣蓄積菌(glycogen-accumulating organisms, GAOs)成為優勢菌種。另Cd-SBR於0.5 mg/L之鎘長期進料濃度下,其生物除磷系統除磷效能未有明顯之負面影響,然而當鎘濃度提升至1 mg/L時,富磷污泥之釋磷量則明顯降低,但好氧攝磷行為仍相當完全。且於長期試驗下,系統出流水SMPs濃度有持續累積之現象。
本研究尚提取Seeding-SBR之生物污泥,分別進行不同濃度重金屬(鎳、鎘及鉛)之厭氧、好氧批次試驗,藉以探討不同單一重金屬對富磷生物污泥中磷代謝及SMPs生成之影響。厭氧批次實驗結果顯示,鎳及鎘皆於5 mg/L即對富磷污泥之厭氧釋磷行為造成明顯抑制,但鉛濃度需於100 mg/L以上,方能對污泥厭氧釋磷行為展現抑制現象;且當鎳濃度20 mg/L、鎘濃度7 mg/L及鉛濃度100 mg/L時,其SMPs濃度即持續生成。另好氧批次結果顯示,鎳及鎘分別於3 mg/L及6 mg/L時,即導致富磷污泥好氧攝磷不完全。當鎳濃度達12 mg/L、鎘濃度為6 mg/L時,其SMPs濃度即持續生成,而鉛則於濃度高達640 mg/L時,仍未發現其對攝磷行為之明顯抑制現象。由此顯示重金屬鎳及鎘於低濃度下,即對富磷污泥厭氧、好氧之磷代謝行為產生明顯之現象,而重金屬鉛之影響則較不明顯。
本研究亦針對Seeding-SBR之生物污泥進行混合重金屬(鎳及鎘)之厭氧批次試驗,藉以探討混合重金屬(鎳及鎘)對富磷污泥厭氧磷代謝行為之影響。實驗結果顯示,當以鎳:鎘 = 5 mg/L:5 mg/L之混合形式進行厭氧批次試驗時,其對厭氧釋磷之抑制性已相當高,故未能藉此判別混合重金屬對富磷污泥之抑制性是否具複合效應,未來可嘗試降低混合重金屬(鎳及鎘)之混合濃度,藉以探討混合重金屬對富磷污泥磷代謝行為之複合效應。
Chemical material manufacturing, metal processing and electronic industries could product a large amount of wastewater with high concentration of heavy metals. This wastewater, which has been pretreated by most factories, may contain lower amounts of heavy metal. When this wastewater discharged into the WWTP in industrial park. It could cause negative influence on biological treatment process, including deterioration of the treatment performance regarding carbon and nutrient removal. The effluent quality in WWTP therefore may fail to meet the required discharge standards. Moreover, the wastewater would cause microorganisms to generate soluble microbial products (SMPs) in biological treatment process. Past researches showed that SMPs may be produced directly from substrate metabolism or from biomass decay, and SMPs is a non- or slowly biodegradable matter. Therefore, the effluent COD could be significantly affected by formation of SMPs. Unfortunately, SMPs is mostly discussed to affect the carbon removal and nitrification/denitrification of the biological treatment process, but seldom has been reported on the influences of heavy metal in the phosphate removal efficiency and the formation of soluble microbial products in enhanced biological phosphorus removal (EBPR) system.
This study therefore constructed an anoxic-oxic sequencing batch reactor (A/O SBR) treating phosphorus-containing synthetic feed (Seeding-SBR). After the reactor reached the steady state, the PAOs-enrich sludge was taken up from Seeding-SBR to set up both nickel (Ni-SBR) and cadmium (Cd-SBR) SBRs, respectively. These experiments then investigated the effect of heavy metal on the phosphorus removal efficiency and formation of SMPs of activated sludge. Long-term experimental results showed that, (i) nickel 0.5 mg L-1 lead to the loss of performance to PAOs-enrich sludge metabolism, however, the cumulating concentration of SMPs was low. When nickel was removed, the system still unable to recover the phosphate-metabolism capabilities and GAOs become the dominant. (ii) Among the cadmium long-term test, the system still maintained its phosphorus removal capabilities, however, SMPs cumulated significantly.
In addition, we further took the PAOs-enrich sludge from Seeding-SBR to examine the impacts of nickel, cadmium and lead on the phosphate-metabolism capabilities and formation of SMPs of PAOs-enrich sludge (the experiments were including anaerobic batch and aerobic batch). Anaerobic batch experimental results showed that nickel and cadmium both exhibited significant inhibition effects at the 5 mg L-1. However, inhibition was found on PAOs-enrich sludge metabolism, only when the concentration of lead was higher than 100 mg L-1. Moreover, we also observed the accumulation of SMPs at the 20 Ni mg L-1, 7 Cd mg L-1 and 100 Pb mg L-1, respectively. Aerobic batch experimental results showed that the deterioration of phosphorus removal was observed at the 3 Ni mg L-1 and 6 Cd mg L-1, respectively. The concentration of lead was up to 640 mg L-1, no inhibition was found due to lead precipitation. Moreover, we have also observed that the concentration of SMPs was accumulated at the 12 Ni mg L-1 and 6 mg L-1, respectively.
Additionally, we took the PAOs-enrich sludge from Seeding-SBR to set up the anaerobic batch of joint Ni-Cd shock loading. This experiment investigated the effect of joint Ni-Cd on the phosphate-metabolism capabilities of PAOs-enrich sludge. Experimental results showed that PAOs-enrich sludge metabolism have seriously affected by Ni-Cd 5/5 mg L-1, so synergism, antagonism and additive effects were not found.
中文摘要 I
英文摘要 III
致謝 V
表目錄 IX
圖目錄 X
第一章 前言 1
1.1 研究緣起 1
1.2 研究目的及內容 1
第二章 文獻回顧 3
2.1 加強生物除磷(EBPR)系統 3
2.1.1 EBPR系統介紹及其除磷程序 3
2.1.2 EBPR系統之主要菌群介紹及其相互關係 4
2.1.3 生物除磷效能惡化因素 7
2.2 溶解性微生物產物(SMPS) 10
2.2.1 SMPs之定義 10
2.2.2 SMPs之特性 12
2.2.3 影響SMPs生成之環境壓力 14
2.3 重金屬 17
2.3.1 重金屬之生物可用性與毒性 17
2.3.2 鎳、鎘及鉛對生物處理系統之影響 18
第三章 實驗材料與方法 21
3.1 研究架構 21
3.2 植種污泥A/O SBR之長期馴養操作 21
3.3 單一重金屬進料之長期馴養操作 23
3.4 單一重金屬之批次實驗 23
3.4.1 重金屬鎳、鎘及鉛之厭氧批次試驗 23
3.4.2 重金屬鎳、鎘及鉛之好氧批次試驗 24
3.5 複合重金屬之批次實驗 25
3.5.1鎳鎘複合之厭氧批次試驗 25
3.6 分析方法與設備 25
第四章 結果與討論 29
4.1 植種污泥A/O SBR之長期馴養之水質數據 29
4.2 單一重金屬進料之長期馴養操作結果 30
4.2.1 鎳負荷進料對生物除磷效能及SMPs生成之影響 30
4.2.1.1鎳負荷 0.5 mg/L對除磷效能之影響 30
4.2.1.2 鎳負荷0.5回復至0 mg/L對除磷效能之影響 32
4.2.1.3 鎳負荷0.5 mg/L對富磷污泥生成SMPs之影響 33
4.2.1.4 鎳負荷0.5回復至0 mg/L對富磷污泥生成SMPs之影響 35
4.2.1.5 鎳負荷對生物除磷系統除磷效能及SMPs生成之影響-小結 35
4.2.2 鎘負荷進料對生物除磷效能及SMPs生成之影響 35
4.2.2.1鎘負荷0.5 mg/L對除磷效能之影響 35
4.2.2.2 鎘負荷0.5突增至1 mg/L對富磷污泥除磷效能之影響 37
4.2.2.3 鎘負荷0.5 mg/L對富磷污泥生成SMPs之影響 37
4.2.2.4 鎘負荷0.5突增至1 mg/L對富磷污泥生成SMPs之影響 39
4.2.2.5 鎘負荷進料對生物除磷效能及SMPs生成之影響-小結 39
4.2.3 綜合討論 39
4.3 單一重金屬厭氧批次之結果 40
4.3.1 鎳對富磷污泥厭氧磷代謝及SMPs生成之影響 40
4.3.1.1 鎳對富磷污泥厭氧磷代謝之影響 40
4.3.1.2 鎳對富磷污泥厭氧生成SMPs之影響 47
4.3.1.3 鎳對富磷污泥厭氧磷代謝及SMPs生成之影響-小結 49
4.3.2 鎘對富磷污泥厭氧磷代謝及SMPs生成之影響 49
4.3.2.1 鎘對富磷污泥厭氧磷代謝之影響 49
4.3.2.2 鎘對富磷污泥厭氧生成SMPs之影響 53
4.3.2.3 鎘對富磷污泥厭氧磷代謝及SMPs生成之影響-小結 55
4.3.3 鉛對富磷污泥厭氧磷代謝及SMPs生成之影響 56
4.3.3.1 鉛對富磷污泥厭氧磷代謝之影響 56
4.3.3.2 鉛對富磷污泥厭氧生成SMPs之影響 60
4.3.3.3 鉛對富磷污泥厭氧磷代謝及SMPs生成之影響-小結 62
4.3.4 綜合討論 63
4.3.4.1重金屬毒性及其對SMPs衍生之影響比較 63
4.3.4.2 綜合討論-小結 68
4.4 單一重金屬好氧批次之結果 68
4.4.1 鎳對富磷污泥好氧磷代謝及SMPs生成之影響 68
4.4.1.1 鎳對富磷污泥好氧磷代謝之影響 68
4.4.1.2 鎳對富磷污泥好氧生成SMPs之影響 72
4.4.1.3 鎳對富磷污泥好氧磷代謝及SMPs生成之影響-小結 74
4.4.2 鎘對富磷污泥好氧磷代謝及SMPs生成之影響 75
4.4.2.1 鎘對富磷污泥好氧磷代謝之影響 75
4.4.2.2 鎘對富磷污泥好氧生成SMPs之影響 79
4.4.2.3 鎘對富磷污泥好氧磷代謝及SMPs生成之影響-小結 80
4.4.3 鉛對富磷污泥好氧磷代謝之影響 81
4.4.3.1 鉛對富磷污泥好氧磷代謝之影響 81
4.4.3.2 鉛對富磷污泥好氧磷代謝之影響-小結 82
4.4.4 綜合討論 82
4.4.4.1 重金屬毒性及其對SMPs衍生之影響比較 82
4.4.4.2 綜合討論-小結 86
4.5 複合金屬厭氧批次之結果 86
4.5.1複合金屬對富磷污泥厭氧磷代謝之影響 86
4.5.2 複合金屬對富磷污泥厭氧磷代謝之影響-小結 88
第五章 結論與建議 89
5.1 結論 89
5.1.1 重金屬負荷對EBPR系統除磷效能及SMPs生成之影響-長期進料結果 89
5.1.2 重金屬突增對富磷污泥厭氧磷代謝及SMPs生成之影響-厭氧批次結果 89
5.1.3 重金屬突增對富磷污泥好氧磷代謝及SMPs生成之影響-好氧批次結果 89
5.1.4 複合金屬對富磷污泥厭氧磷代謝之影響-厭氧批次結果 90
5.2 建議 90
參考文獻 91
附錄A-1 鎳負荷長期馴養結果 100
附錄A-2 鎘負荷長期馴養結果 100
附錄B-1 單一重金屬鎳厭氧批次結果 101
附錄B-2 單一重金屬鎘厭氧批次結果 103
附錄B-3 單一重金屬鉛厭氧批次結果 105
附錄B-4 單一重金屬鎳好氧批次結果 107
附錄B-5 單一重金屬鎘好氧批次結果 109
附錄C-1 複合重金屬厭氧批次結果 111
1.Ahn, Y. H. and Speece, R. E. (2006). Elutriated acid fermentation of municipal primary sludge. Water Research, 40(11), 2210-2220.
2.Aquino, S. F. and Stuckey, D. C. (2004a). The effect of organic and hydraulic shock loads on the production of soluble microbial products in anaerobic digesters. Water Environmental Research, 76, 2628-2636.
3.Aquino, S. F. and Stuckey, D. C. (2008). Integrated model of the production of soluble microbial products (SMPs) and extracellular polymeric substances (EPS) in anaerobic chemostats during transient conditions. Biochemical Engineering, 38, 138-146.
4.Aquino, S. F., Gloria, R. M., Silva, S. Q., Chernicharo, C. A. L (2009). Quantification of the Inert Chemical Oxygen Demand of Raw Wastewater and Evaluation of Soluble Microbial Product Production in Demo-Scale Upflow Anaerobic Sludge Blanket Reactors under Different Operational Conditions. Water Environment Research, 81(6), 608-616.
5.Aquino, S. F., Stuckey, D. C. (2004b). Soluble microbial products formation in anaerobic chemostats in the presence of toxic compounds.Water Research, 38, 255-266.
6.Altaş L. (2009). Inhibitory effect of heavy metals on methane-producing anaerobic granular sludge. Journal of Hazardous Materials, 162, 1551-1556.
7.Barker, D. J. and Stuckey, D. C. (1999). A review of soluble microbial products (SMPs) in wastewater treatment systems. Water Research, 33(14), 3063-3082.
8.Boero, V. J., Eckenfelder, Jr. W. W. and Bowers, A. R. (1996). Molecular weight distribution of soluble microbial products in biological systems. Water Science Technology, 34(5-6), 241-248.
9.Barker, D. J., Mannucchi, G. A., Salvi, S. M. L. and Stuckey, D. C. (1999). Characterisation of soluble residual chemical oxygen demand (COD) in anaerobic wastewater treatment effluents. Water Research, 33(11), 2499-2510
10.Barker, D. J. and Stuckey, D. C. (2001). Modelling of soluble microbial products in anaerobic digestion:the effect of feed strength and composition. Water Environmental Research, 73(2), 173-184.
11.Bagby, M. M. and Sherrard, J. H. (1981). Combined effects of cadmium and nickel on the activated sludge process. Water Pollution Control Federation, 53(11), 1609-1619.
12.Battistoni, P. Fava, G. and Ruello, M. L. (1993). Heavy metal shock load in activated sludge uptake and toxic effects. Water Research, 27, 821-827.
13.Burton, K. (1956). A study of the conditions and mechanism of the diphenylamine reaction for the colorimetric estimation of deoxyribonucleic acid. Biochemical,62 ,315-323.
14.Brdjanovic, D., Van Loosdrecht, M. C. M., Hooijmans, C. M., Mion, T., Alaerts, G. J. and Jeijnen, J. J. (1998). Bioassay for glycogen determination in biological phosphorus removal systems. Water Science Technology, 37, 541-547.
15.Comeau, Y., Hall, K. J., Hancock, R. E. W. and Oldham, W. K. (1986). Biochemical model enhanced biological phosphorus removal. Water Research, 20(12), 1511-1521.
16.Cech, J. S. and Hartman, P. (1990). Glucose induced break-down of enhanced biological phosphate removal. Environmental Technology, 11, 651-656.
17.Chang, W. C., Chiou, R. J. and Ouyang, C. F. (1996). The effect of residual substrate utilisation on sludge settling in an enhanced biological phosphorus removal process. Water Science Technology, 34 (1-2), 425-430.
18.Converti, A., Zilli, M., Poloniecki, R. H., Del Borghi, M. and Ferraiolo, G. (1993). Influence of nutrient concentration in new operating criteria for biological removal of phosphorus from wastewaters. Water Research, 27(5), 791-798.
19.Cech, J. S. and Hartman, P. (1993). Competition between polyphosphate and polysaccharide accumulating bacteria in enhanced biological phosphate removal systems. Water Research, 27(7), 1219-1225.
20.Carucci, A., Kuhni, M., Brun, R., Carucci, G., Koch, G., Majone, M. and Siegrist, H. (1999). Microbial competition for the organic substrates and its impact on EBPR systems under conditions of changing carbon feed. Water Science Technology, 39(1), 75-85.
21.Chung, K. Y., Han, S. S., Kim, H. K., Choi, G. S., Kim, I. S., Lee, S. S., Woo, S. H., Lee, K. H. and Kim, J. J. (2006). Inhibitory Effect of the Selected Heavy Metals on the Growth of the Phosphorus Accumulating Microorganism, Acinetobacter sp. Korean Journal of Environmental Agriculture, 25(1), 40-46.
22.Chudoba, J. (1967). Residual organic matter in activated sludge process effluents. I. Degradation of saccharides, fatty acids and amino acids under batch conditions. Scientific Papers of the Institute of Chemical Technology (Czech). Technology, Water. F12, 39-75.
23.Chudoba, J. (1985). Inhibitory effect of refractory organic compounds produced by activated sludge microorganisms on microbial activity and occulation.Water Research. 19(2), 197-200.
24.Çeçen, F., Semerci, N., Geyik, A. G. (2010) Inhibition of respiration and distribution of Cd, Pb, Hg, Ag and Cr species in a nitrifying sludge. Journal of Hazardous Materials, 178, 619-627.
25.Codina, J. C., Munoz, M. A., Cazorla, F. M., Perez-Garcia, A., Morinigo, M. A. and De Vicente, V. (1998). The inhibition of methanogenic activity from anaerobic domestic sludges as a simple toxicity bioassay. Water Research, 32, 1338-1342.
26.Chung, K. Y., Han, S. S, Kim, H. K., Choi, G. S., Kim, I. S., Lee, S. S., Woo, S. H., Lee, K. H., Kim, J. J. (2006). Inhibitory effect of the selected heavy metals on the growth of the phosphorus accumulating microorganism, Acinetobacter sp.. Korean Journal of environmental agriculture, 25(1), 40-46.
27.Colussi, I., Cortesi, A., Vedova, L.D., Gallo, V. and Cano Robles, F. K. (2009). Start-up procedures and analysis of heavy metals inhibition on methanogenic activity in EGSB reactor. Bioresource Technology, 100, 6290-6294.
28.Comeau, Y., Hall, K. J., Oldham, W. K. (1988). Determination of Poly-β-hydroxybutyrate and Poly-β-hydroxyvalerate in Activated Sludge by Gas-Liquid Chromatography. Applied Environmental Microbiology, 54, 2325-2327.
29.Danesh, S. and Oleszkiewicz, J.A. (1997). Use of a new anaerobic–aerobic sequencing batch reactor system to enhance biological phosphorus removal. Water Science Technology, 35(1), 137-144.
30.Eckenfelder, Jr. W. W. and Musterman, J. L. (1995). Activated sludge treatment of industrial wastewater. Technomic Publishing Company, Inc.
31.Filipe, C. D. M., Daigger, G. T. and Grady, C. P. L. J. (2001). A metabolic model for acetate uptake under anaerobic conditions by glycogen accumulating organisms: stoichiometry, kinetics and the effect of pH. Biotechnology Bioengineering, 76(1) 17-31.
32.Florentz, M., Caille, D., Bourdon, F. and Sibony, J. (1987). Biological phosphorus removal in France. Water Science Technology, 19(4), 1171–1173.
33.Fang, H. H. P., Jia, X. S. (1998). Soluble microbial products (SMPs) of Acetotrophic Methanogenesis, Bioresource Technology, 66, 235-239.
34.Gaffney, F., Heukelekian, H. (1961). Biochemical oxidation of the lower fatty acids. Water Pollution Control Federation, 11, 1169-1184.
35.Grady, C. P. L. Jr. and Williams, D. R. (1975). Effects of influent substrate concentration on the kinetics of natural microbial populations in continuous culture. Water Research,9 , 171-180.
36.Gaudy Jr, A. F. and Blachly, T. R. (1985). A study of the biodegradability of residual COD. Water Pollution Control Federation, 57(4), 332-338.
37.Gikas. P. (2007). Kinetic responses of activated sludge to individual and joint nickel (Ni(II)) and cobalt (Co(II)): an isobolographic approach. Journal of Hazardous Materials, 143, 246-256.
38.Gikas, P. (2008). Single and combined effects of nickel (Ni(II)) and cobalt (Co(II)) ions on activated sludge and on other aerobic microorganisms: a review. Journal of Hazardous Materials, 159, 187-203.
39.Hejzlar, J. and Chudoba, J. (1986). Microbial polymers in the aquatic environment: I. Production by activated sludge microorganisms under different conditions. Water Research, 20(10), 1209-1216.
40.Herbert, D., Philipps, P. J. and Strange, R. E. (1971). Carbohydrate analysis. Methods Enzymol, 5B, 265-277.
41.Ichihashi, O., Satoh, H., Mino, T. (2006). Effect of soluble microbial products on microbial metabolisms related to nutrient removal. Water Research. 40,1627-1633.
42.Kim, D.S., Jung, N. S. and Park, Y. S. (2008). Korean Journal of Chemical Engineering, Characteristics of nitrogen and phosphorus removal in SBR and SBBR with different ammonium loading rates. Korean Journal of Chemical Engineering, 25(4), 793-800.
43.Kuo, W. C., Sneve, M. A. and Parkin, G. F. (1996). Formation of soluble microbial products during anaerobic treatment. Water Environmental Research, 68, 279-285.
44.Kuo, W. C. and Parkin, G. F. (1996) Characterization of soluble microbial products from anaerobic treatment by molecular weight distribution and nickel-chelating properties. Water Research, 30(4), 915-922.
45.Kuo, W. C., Sneve, M. A. and Parkin, G. F. (1996). Formation of soluble microbial products during anaerobic treatment. Water Environmental Research, 68, 279-285.
46.Liu, W. T., Marsh, T. L. and Forney, L. J. (1998). Determination of the microbial diversity of anaerobic-aerobic activated sludge by a novel molecular biological technique. Water Science Technology, 37(4-5), 417-422.
47.Laspidou, C. S. and Rittmann, B. E. (2002). A unified theory for extracellular polymeric substances, soluble microbial products, and active and inert biomass. Water Research, 36, 2711-2720.
48.Labbs, C., Amy, G. and Jekel, M. (2006). Understanding the size and character of fouling-causing substances from effluent organic matter (EfOM) in low-pressure membrane filtration. Environmental Science Technology, 40, 4495-4499.
49.Laera, G., Pollice A., Saturno D., Giordano, C. and Lopez, A. (2005). Zero net growth in a membrane bioreactor with complete sludge retention. Water Research, 39 (20), 5241-5249.
50.Lin, C. Y. and Chen, C. C. (1999). Effect of heavy metals on the methanogenic UASB granule. Water Research, 33, 409-416.
51.Lin, Y. M., Yang, X. F. and Liu, Y. (2003). Kinetic responses of activated sludge microorganisms to individual and joint copper and zinc. Journal of Environmental Science and Health, 38(2), 353-360.
52.Lowry, O.H., Rosebrough, N.J., Farr, A.L. and Randall, R.J. (1951). Protein measurement with the Folin phenol reagent. Biological Chemistry, 193, 265-271.
53.Mino, T., Liu, W. T., Satoh, H. and Matsuo, T. (1996). Possible metabolisms of polyphosphate accumulating organisms (PAOs) and glycogen accumulating non-poly-P organisms (GAOs) in the enhanced biological phosphate removal process. Med. Fac. Landbouww. Univ. Gent 61/4a, 1769-1776.
54.Mino, T., Van Loosdrecht, M. C. M. and Hejjnen, J. J. (1998). Microbiology and biochemistry of the enhanced biological phosphate removal process. Water Research, 32(11), 3193-3207.
55.Mino, T., Arun, V., Tsuzuki, Y. and Matsuo, T. (1987). Effect of phosphorus accumulation on acetate metabolism in the biological phosphate removal process. In: Ramadori R (ed) Biological phosphate removal from wastewater. Pergamon Press, Oxford, 27-38.
56.Maurer, M., Gujer, W., Hany, R. and Bachman, S. (1997). Intracellular carbon flow in phosphorus accumulating organisms from activated sludge systems. Water Research, 31(4), 907-917.
57.Mino, T., Liu, W. T., Kurisu, F. and Matsuo, M. (1995). Modelling glycogen storage and denitrification capability of microorganisms in enhanced biological phosphate removal processes. Water Science Technology, 31(2), 25-34.
58.Mulkerrins, D., Dobson, A. D. W. and Colleran, E. (2004). Parameters affecting biological phosphate removal from wastewaters, Environmental International, 30, 249-259.
59.Mulkerrins, D., Dobson, A. D. W. and Colleran, E. (2004). Parameters affecting biological phosphate removal from wastewaters, Environmental International, 30, 249-259.
60.McCarthy, P. L. (1964). Anaerobic waste treatment fundamentals, part III. Toxic materials and their control. Public Works 95(11), 91-94.
61.Madoni, P., Davoli, D. and Guglielmi, L. (1999). Response of SOUR and AUR to heavy metal contamination in activated sludge. Water Research, 33, 2459-2464.
62.Namkung, E. and Rittmann, B. E. (1986). Soluble microbial products (SMPs) formation kinetics by biofilms. Water Research, 20(6), 795-806.
63.Noguera, D. R., Araki, N. and Rittmann, B. E. (1994). Soluble microbial products (SMPs) in anaerobic chemostats. Biotechnology Bioengineering, 44, 1040-1047.
64.Nielsen, P.H., Jahn, A. and Palmgren, R. (1997) Conceptual model for production and composition of exopolymers in biofilms. Water Science Technology, 36(1), 11-19.
65.Ni, B. J., Zeng, R. J., Fang, F., Xie, W. M., Sheng, G. P. and Yu, H. Q. (2010). Fractionating soluble microbial products in the activated sludge process. Water Research,44(7), 2292-2302.
66.Noguera, D. R., Araki, N. and Rittmann, B. E. (1994). Soluble microbial products (SMPs) in anaerobic chemostats. Biotechnology Bioengineering. 44, 1040-1047.
67.Oehmen, A., Vives, M. T., Lu, H., Yuang, Z. and Keller, J. (2005). The effect of pH on the competition between polyphosphate-accumulation organisms and glycogen-accumulation organisms. Water Research, 39, 3727-3737.
68.Obayashi, A. W. and Gaudy Jr, A.F. (1973). Aerobic digestion of extracellular microbial polysaccharides. Water Pollution Control Federation, 45, 1584-1594.
69.Ong, S. A., Toorisaka, E., Hirata, M. and Hano, T. (2005). The behaviour of Ni(II), Cr(III), and Zn(II) in biological wastewater treatment process. Acta hydrochimica et hydrobiologica, 33(2), 95-103.
70.Pereira, H., Lemos, P. C., Reis, M. A. M., Crespo, J. P. S. G., Carrondo, M. J. T. and Santos, H. (1996). Model for carbon metabolism in biological phosphorus removal process based on in vivo C13-NMR labeling experiments. Water Research, 30(9), 2128-2138.
71.Panswad, T., Doungchai, A. and Anotai, J. (2003). Temperature effect on microbial community of enhanced biological phosphorus removal system. Water Research, 37(2), 409-415.
72.Pitman, A. R. (1999). Management of biological nutrient removal plant sludges-change the paradigms?. Water Research, 33(5), 1141-1146.
73.Parkin, G. F. and McCarty, P. L. (1981a). A comparison of the characteristics of soluble nitrogen in untreated and activated sludge treated wastewaters. Water Research, 15,139-149.
74.Parkin, G. F. and McCarty, P. L. (1981b). Production of soluble organic nitrogen during activated sludge treatment. Water Pollution Control Federation, 53(1), 99-112.
75.Panswad, T., Tongkhammak, N. and Anotai, J. (2007). Estimation of intracellular phosphorus content of phosphorus-accumulating organisms at different P:COD feeding ratios. Journal of Environmental Management, 87, 141-145.
76.Parkin, G. F. and McCarty, P. L. (1981c). Sources of soluble organic nitrogen in activated sludge effluents. Water Pollution Control Federation, 53(1), 89-98.
77.Pribyl, M., Tucek, F., Wilderer, P. A. and Wanner, J. (1997). Amount and nature of soluble refractory organics produced by activated sludge microorganisms in sequencing batch and continuous flow reactors. Water Science Technology, 35(1), 27-34.
78.Rossetti, S., Carucci, A. and Rolle, E. (1994). Survey of the occurrence of filamentous organisms in municipal wastewater treatment plants related to their operating conditions. Water Science Technology, 29(7), 305-308.
79.Rickard, L. F. and McClintock, S. A. (1992). Potassium and Magnesium requirements for enhanced biological phosphorus removal from waster-water. Water Science Technology, 26(9-11), 2203-2206.
80.Randall, A. A., Benefield, L. D. and Hill, W. E. (1997). Induction of phosphorus removal in an enhanced biological phosphorus removal bacterial population. Water Research, 31(11), 2869-2877.
81.Ruel, S. M., Comeau, Y., Heduit, A., Deronzier, G., Ginestet, P. and Audic, J. M. (2002). Operating conditions for the determination of the biochemical acidogenic potential of wastewater. Water Research, 36, 2337-2341.
82.Rickard, L. F. and McClintock, S. A. (1992). Potassium and Magnesium requirements for enhanced biological phosphorus removal from waster-water. Water Science Technology, 26(9-11), 2203-2206.
83.Rittmann, B. E., Bae, W., Namkung, E. and Lu, C. J. (1987). A critical evaluation of microbial product formation in biological processes. Water Science Technology, 19, 517-528.
84.Rittmann, B. E. and McCarty, P. L. (2001). Environmental Biotechnology: principles and applications. McGraw-Hill, New York.
85.Ramesh, L. D. J. and Hong, S .G. (2006). Soluble microbial products (SMPs) and soluble extracellular polymeric substances (EPS) from wastewater sludge. Applied Microbiology and Biotechnology, 73, 219–225.
86.Ramdani, A., Dold, P., Déléris, S., Lamarre, D., Gadbois, A. and Comeau, Y. (2010). Biodegradation of the endogenous residue of activated sludge. Water Research, 44(7), 2179-2188.
87.Rappaport, S. M., Richard, M. G., Hollstein, M. C. and Talcott, R. E. (1979). Mutagenic activity in organic wastewater concentration. Environmental Science Technology, 13, 957-961.
88.Ross, N., Deschenes, L., Bureau, J., Clement, B., Comeau, Y. and Samson, R. (1998). Ecotoxicological assessment and effects of physicochemical factors on biofilm development in groundwater conditions. Environmental Science Technology, 32, 1105-1111.
89.Shehab, O., Deininger, R., Porta, F. and Wojewski, T. (1996). Optimising phosphorus removal at the Ann Arbor wastewater treatment plant. Water Science Technology, 34, (1-2), 493-499.
90.Scruggs, C. E. and Randall, C. W. (1998). Evaluation of filamentous microorganism growth factors in an industrial wastewater activated sludge system. Water Science Technology, 37(4-5), 263-270.
91.Smolders, G. J. F., Van Loosdrecht, M. C. M. and Heijnen, J. J. (1994). pH: key factor in the biological phosphorus removal process. Water Science Technology, 29(7), 71-74.
92.Schuler, A. J. and Jenkins, D. (2002). Effects of pH on enhanced biological phosphorus removal metabolisms. Water Science Technology, 46,(4-5), 171-178.
93.Satoh, H., Ramey, W. D., Koch, F. A., Oldham, W. K., Mino, T. and Matsuo, T. (1996). Anaerobic substrate uptake by the enhanced biological phosphorus removal activated sludge treating real sewage. Water Science Technology, 34(4), 8-15.
94.Sibera, S. and Eckenfelder, W. W. Jr. (1980). Effluent quality variation from multicomponent substrates in the activated sludge process. Water Research, 14(5), 471-476.
95.Schiener, P., Nachaiyasit, S. and Stuckey, D. C. (1998). Production of soluble microbial products (SMPs) in an anaerobic ba‚ed reactor: composition, biodegradability and the effect of process parameters. Environmental Technology, 19, 391-400.
96.Sotemann, S. W., Ristow, N.E., Wentzel, M. C. and Ekama, G. A. (2005). A steady state model for anaerobic digestion of sewage sludges. Water SA, 31, 511-528.
97.Sujarittanonta, S. and Sherrard, J. H. (1981). Activated sludge nickel toxicity studies. Water Pollution Control Federation, 53, 1314-1322.
98.Su, M. C., Cha, D. K. and Anderson, P. R. (1995). Influence of selector technology on heavy metal removal by activated sludge: secondary effects of selector technology. Water Research, 29, 971–976.
99.Sheng, G. P., Yu, H. Q., Yue, Z. B. (2005). Production of extracellular polymeric substances from rhodopseudomonas acidophila in the presence of toxic substances. Applied Microbiology Biotechnology, 69, 216-222.
100.Tasli, R., Artan, N. and Orhon, D. (1997). The influence of different substrates on enhanced biological phosphorus removal in a sequencing batch reactor. Water Science Technology, 35, 75-80.
101.Thomas, M., Wright, P., Blackall, L., Urbain, V. and Keller, J. (2003). Optimisation of Noosa BNR plant to improve performance and reduce operating costs. Water Science Technology, 47(12), 141-148.
102.Tsai, C. S. and Liu, W. T. (2002). Phylogenetic and physiological diversity of tetrad-forming organisms in deteriorated biological phosphorus removal systems. Water Science Technology, 46(1-2), 179-184.
103.Tchobanoglous, G., Burton, F.L. and Stensel, H.D. (2003). Wastewater Engineering: Treatment and Reuse (4th ed). McGraw-Hill Higher Education, New York.
104.Ting, Y. P., Imai, H. and Kinoshita, S. (1994). Effect of shock-loading of heavy metals on total organic carbon and phosphate removal in an anaerobic-aerobic activated sludge process. World Journal of Microbiology and Biotechnology, 10, 308.312.
105.Tsai, Y. P., You, S. J., Pai, T. Y., Chen, K. W. (2006). Effect of Cd(II) on different bacterial species present in a single sludge process for carbon and nutrient removal. Journal of Environmental Engineering, 132, 173-180.
106.Vyrides, I., Stuckey, D. C. (2009). Effect of fluctuations in salinity on anaerobic biomass and production of soluble microbial products (SMPs). Biodegradation, 20, 165-175.
107.Wentzel, M. C., Lotter, L. H. and Loewenthal, R. E. (1986). Metabolic behavior of Acinetobacter spp. in enhanced biological phosphorus removal-A biochemical model. Water SA,12(4), 209-223.
108.Wentzel, M.C., Lotter, L.H. and Ekama, G. A. (1991). Evaluation of biochemical models for biological excess phosphorus removal .Water Science Technology, 23, 567-576.
109.Whang, L. M. and Park, J. K. (2002). Competition between polyphosphate- and glycogen-accumulating organisms in biological phosphorus removal systems-effect of temperature. Water Science Technology, 46, 191-194.
110.Wingender, J., Neu, T. R. and Flemming, H.C. (1999). Microbial Extracellular Polymeric Substances:Characterization, Structures and Function. Springer-Verlag, Berlin Heidelberg, Chapter 3.
111.Weber, S. and Sherrard, J. H. (1980). Sherrard .Effects of cadmium on the completely mixed activated sludge. Water Pollution Control Federation, 52(9), 2378-2388.
112.Wang, X. H., Gai, L. H., Sun, X. F. Xie, H. J., Gao, M. M. and Wang, S. G. (2010). Effects of long-term addition of Cu(II) and Ni(II) on the biochemical properties of aerobic granules in sequencing batch reactors. Applied Microbiology Biotechnology, (86), 1967-1975.
113.Yagci, O.N., Artan, N., Ubay, C.E., Randall, C.W. and Orhon, D. (2003). Metabolic model for acetate uptake by a mixed culture of phosphate- and glycogen-accumulating organisms under anaerobic conditions. Biotechnology Bioengineering, 84(3), 359-373.
114.You, S. J., Tsai, Y. P. and Huang, R. Y. (2009). Effect on heavy metal on nitrification performance in different activated sludge process. Journal of hazardous materials, 165, 987-994.
115.Yetis, U. and Gokcay, C. F. (1989). Effect of Nickel (II) on activated sludge, Water Research, 23, 1003-1007.
116.Zeng, R. J., Yuan, Z. and Keller, J. (2006). Effects of solids concentration, pH and carbon addition on the production rate and composition of volatile fatty acids in prefermenters using primary sewage sludge. Water Science Technology, 53(8), 263-269.
117.Zhang, X., Bishop, P. and Kinkle, B. (1999). Compariso n of extraction methods for quantifying extracellular polymers in biofilms. Water Science Technology, 39, 211-218.
118.台灣地區民國96年工業用水量統計報告。(2008)。經濟部水利署。
119.吳政鴻(2009),不同環境壓力條件下生物除磷系統溶解性微生物產物之生成及其對除磷效能之影響,碩士論文,國立雲林科技大學環境與安全工程研究所,斗六市。
120.陳建衡(2006),溶解性微生物產對生物除磷系統之影響,碩士論文,國立雲林科技大學環境與安全工程研究所,斗六市。
121.陳健民(民91)。環境毒物學。新文京。
122.羅博童(1993),化學沉澱法去除重金屬鉛離子時沉降顆粒粒徑的影響與控制研究,國立中興大學環境工程研究所碩士論文,台中市。
123.羅時斌(2007),不同SRT下溶解性微生物產對生物除磷系統之影響,碩士論文,國立雲林科技大學環境與安全工程研究所,斗六市。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top