跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.213) 您好!臺灣時間:2025/11/08 08:01
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林福明
研究生(外文):Fu-Ming Lin
論文名稱:幾丁聚醣-草酸與幾丁聚醣-酒石酸凝膠顆粒之製備應用
論文名稱(外文):Preparation and application of chitosan-oxalic acid and chitosan-tartaric acid gel beads
指導教授:吳紹榮吳紹榮引用關係
指導教授(外文):Shao-Rong Wu
口試委員:糜福龍吳弦聰
口試委員(外文):Fwu-Long MiHsien-Tsung Wu
口試日期:2011-07-15
學位類別:碩士
校院名稱:明志科技大學
系所名稱:化學工程研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:75
中文關鍵詞:幾丁聚醣草酸鹽酒石酸鹽銅離子
外文關鍵詞:chitosanoxalatetartratecopper ion
相關次數:
  • 被引用被引用:0
  • 點閱點閱:411
  • 評分評分:
  • 下載下載:55
  • 收藏至我的研究室書目清單書目收藏:0
本實驗製備凍乾吸附劑(幾丁聚醣-草酸、幾丁聚醣-酒石酸)、烘乾吸附劑(幾丁聚醣-草酸、幾丁聚醣-酒石酸),吸附實驗以不同的銅離子起始濃度、溫度、pH為實驗變數,以探討其對金屬離子吸附的影響。利用FTIR、TGA、XRD分析幾丁聚醣-草酸(酒石酸)凍乾吸附劑、幾丁聚醣-草酸(酒石酸)烘乾吸附劑的性質。幾丁聚醣-草酸(酒石酸)凍乾吸附劑、幾丁聚醣-草酸(酒石酸)烘乾吸附劑最大吸附量被觀察在pH 5。幾丁聚醣-草酸及幾丁聚醣-酒石酸凍乾吸附劑在Langmuir等溫模式中,其最大吸附量qL分別為227.27mg/g、175.44 mg/g。以動力學吸附模式探討,實驗數據顯示幾丁聚醣-草酸及幾丁聚醣-酒石酸凍乾吸附劑吸附行為較符合擬二階動力學吸附模式,說明化學吸附為速率決定步驟。在熱力學模式中幾丁聚醣-草酸及幾丁聚醣-酒石酸凍乾吸附劑求出其自由能為負值,表示吸附行為為自發性反應,而焓為正值,表示吸附過程為吸熱反應,熵值為正值,表示亂度增加。
Chitosan-oxalate (CO) and chitosan-tartrate (CT) adsorbents, prepared by freeze-dried and oven-dried, were used for treatment of Cu(II) ion from aqueous solution. The effects of the initial pH value of the solution, contact time, temperature and the initial Cu(II) ion concentration on the adsorption of Cu(II) ion were investigated. The characterization of CO and CT adsorbents were investigated by IR, XRD and TGA. The maximum adsorption amount was observed at pH 5 for both CO and CT adsorbents. The adsorption isotherms were better fitted by the Langmuir equation. The maximum theoretical Cu(II) ion adsorption capacities of CO and CT adsorbents prepared by freeze-dried were 227.27 mg/g and 175.44 mg/g respectively. The adsorption kinetics were well described by the pseudo-second order equation, indicating that chemical adsorption is the rate-limiting step for the CO and CT adsorbents. The negative values of gibbs free energy of adsorption indicated the spontaneous adsorption of Cu(II) ion on the CO and CT adsorbents, while the positive enthalpy change indicated an endothermic adsorption process.
目錄
明志科技大學碩士學位論文指導教授推薦書 i
明志科技大學碩士學位論文口試委員會審定書 ii
明志科技大學學位論文授權書 iii
誌謝 iv
中文摘要 v
Abstract vi
目錄 vii
表目錄 xi
圖目錄 xii
第一章 前言 1
1-1 研究動機 1
1-2 研究項目 2
1-2-1 吸附劑製程 2
1-2-2 吸附劑吸附行為探討 2
1-2-3 SEM分析 2
1-2-4 XRD分析 2
1-2-5 TGA分析 2
1-2-6 FTIR分析 3
第二章 文獻回顧 4
2-1 重金屬來源 4
2-2 重金屬汙染物的處理 4
2-3 銅的特性 5
2-3-1 銅的危害 6
2-4 幾丁質(chitin) 7
2-4-1 幾丁聚醣(chitosan) 8
2-4-2 幾丁質與幾丁聚醣的製備方法 9
2-4-3 幾丁質與幾丁聚醣的特性 11
2-4-4 幾丁質與幾丁聚醣的應用 12
2-4-5 幾丁聚醣吸附重金屬之特性 16
2-5 交聯劑的應用 18
2-6 吸附理論 20
2-7 等溫吸附模式 21
2-8 動力學吸附模式 24
2-9 熱力學吸附模式 27
第三章 實驗方法與設備 28
3-1 實驗藥品 28
3-2 實驗設備與分析儀器 29
3-3 凍乾吸附劑 31
3-3-1 草酸濃度製成凍乾吸附劑 31
3-3-2 酒石酸濃度製成凍乾吸附劑 32
3-4 烘乾吸附劑 33
3-4-1 草酸濃度製成烘乾吸附劑 33
3-4-2 酒石酸濃度製成烘乾吸附劑 34
3-5 吸附劑吸附銅離子溶液之方法 35
3-6 吸附劑吸附銅離子溶液之吸附實驗 36
3-6-1 等溫吸附實驗 36
3-6-2 動力學吸附探討 38
3-6-3 不同pH值吸附實驗 38
3-6-4 不同溫度吸附實驗 40
3-7 銅離子溶液分析 42
3-8 吸附劑表面形態觀察 42
3-9 吸附劑晶形結構分析 42
3-10 吸附劑熱重損失分析 42
3-11 吸附劑官能基分析 42
第四章 實驗結果與討論 43
4-1 電子顯微鏡SEM分析 43
4-1-1 SEM下之探討 43
4-2 吸附劑吸附平衡實驗 46
4-2-1 幾丁聚醣-草酸吸附劑 46
4-2-2 幾丁聚醣-酒石酸吸附劑 47
4-3 等溫吸附模式探討 48
4-3-1 幾丁聚醣-草酸等溫吸附 48
4-3-2 幾丁聚醣-酒石酸等溫吸附 50
4-4 動力學吸附探討 53
4-4-1 幾丁聚醣-草酸動力學吸附 53
4-4-2 幾丁聚醣-酒石酸動力學吸附 56
4-5 pH值對吸附的影響 60
4-5-1 不同pH值幾丁聚醣-草酸(酒石酸)凍乾與幾丁聚醣-草酸(酒石酸)烘乾吸附劑吸附實驗 60
4-6 熱力學吸附探討 61
4-6-1 幾丁聚醣-草酸熱力學吸附 61
4-6-2 幾丁聚醣-酒石酸熱力學吸附 62
4-7 X光散射儀(XRD)之探討 64
4-8 FTIR之探討 65
4-8 TGA之探討 66
第五章 結論 67
參考文獻 69

表目錄
表2-1 藍色胞質素在血液中的功能 6
表2-2 幾丁質與幾丁聚醣的化學性質 11
表2-3 幾丁質與幾丁聚醣的應用範圍 12
表2-4 幾丁質與幾丁聚醣在機能性食品之應用 13
表2-5 幾丁質與幾丁聚醣應用在生醫材料 14
表4-1 幾丁聚醣-草酸及幾丁聚醣-酒石酸之RL值對Langmuir等溫吸附模式吸附判定 51
表4-2 幾丁聚醣-草酸及幾丁聚醣-酒石酸之Langmuir等溫吸附模式數據 52
表4-3 幾丁聚醣-草酸及幾丁聚醣-酒石酸之Freundlich等溫吸附模式數據 52
表4-4 幾丁聚醣-草酸及幾丁聚醣-酒石酸之擬一階吸附動力模式數據 58
表4-5 幾丁聚醣-草酸及幾丁聚醣-酒石酸之擬二階吸附動力模式數據 59
表4-6 幾丁聚醣-草酸及幾丁聚醣-酒石酸之內部擴散吸附動力模式數據 59
表4-7 幾丁聚醣-草酸及幾丁聚醣-酒石酸之熱力學吸附模式數據(△H0 & △S0) 63
表4-8 幾丁聚醣-草酸及幾丁聚醣-酒石酸之熱力學吸附模式數據(△G0) 63

圖目錄
圖2-1 幾丁質的化學結構 7
圖2-2 幾丁聚醣的化學結構 8
圖2-3 幾丁質製備流程 9
圖2-4 幾丁聚醣製備流程 10
圖2-5 幾丁聚醣吸附金屬離子的反應類型[31](a)離子交換(b)螯合 17
圖2-6 幾丁聚醣經不同交聯劑交聯後的結構式[37](a)chitosan(b)chitosan-glutaraldehyde(c)chitosan-epichlorohydrin(d)chitosan-ethylene glycol diglycidyl ether 19
圖3-1 ICP-OES(感應耦合電漿放射光譜儀) 30
圖3-2 SEM(掃描式電子顯微鏡) 30
圖3-3 草酸凍乾吸附劑 31
圖3-4 酒石酸凍乾吸附劑 32
圖3-5 草酸烘乾吸附劑 33
圖3-6 酒石酸烘乾吸附劑 34
圖3-7 配製硫酸銅溶液 35
圖3-8 吸附劑吸附未知濃度銅離子溶液(mg/L) 35
圖3-9 不同初始濃度之吸附劑吸附銅離子 37
圖3-10 不同pH值之吸附劑吸附銅離子 39
圖3-11 不同溫度之吸附劑吸附銅離子 41
圖4-1 幾丁聚醣-草酸凍乾吸附劑 44
圖4-2 幾丁聚醣-草酸烘乾吸附劑 44
圖4-3 幾丁聚醣-酒石酸凍乾吸附劑 45
圖4-4 幾丁聚醣-酒石酸烘乾吸附劑 45
圖4-5 幾丁聚醣-草酸吸附劑之銅離子吸附量變化情形 46
圖4-6 幾丁聚醣-酒石酸吸附劑之銅離子吸附量變化情形 47
圖4-7 幾丁聚醣-草酸之Langmuir 等溫吸附模式 49
圖4-8 幾丁聚醣-草酸之Freundlich 等溫吸附模式 49
圖4-9 幾丁聚醣-酒石酸之Langmuir等溫吸附模式 50
圖4-10 幾丁聚醣-酒石酸之Freundlich等溫吸附模式 51
圖4-11 幾丁聚醣-草酸之擬一階吸附動力模式 54
圖4-12 幾丁聚醣-草酸之擬二階吸附動力模式 54
圖4-13 幾丁聚醣-草酸之內部擴散吸附動力模式 55
圖4-14 幾丁聚醣-酒石酸之擬一階吸附動力模式 57
圖4-15 幾丁聚醣-酒石酸之擬二階吸附動力模式 57
圖4-16 幾丁聚醣-酒石酸之內部擴散吸附動力模式 58
圖4-17 不同pH值下吸附劑吸附銅離子的吸附量 60
圖4-18 幾丁聚醣-草酸之熱力學吸附模式 61
圖4-19 幾丁聚醣-酒石酸之熱力學吸附模式 62
圖4-20 幾丁聚醣與不同交聯劑的XRD 64
圖4-21 幾丁聚醣與不同交聯劑的FTIR 65
圖4-22 幾丁聚醣與不同交聯劑的TGA 66


參考文獻
1.J. C. Y. Ng, W. H. Cheung, and G. Mckay, “Equilibrium studies of the sorption of Cu(II) ions onto chitosan”, Journal of colloid and interface science 255, 64–74 (2002)
2.G. Crini, P.-M. Badot, “Application of chitosan, a natural aminopolysaccharide, for dyeremoval from aqueous solutions by adsorption processes using batch studies: a review of recent literature”, Progress in polymer science 33, 399–447 (2008)
3.D. Mohan, C. U. P. Jr, “Arsenic removal from water/wastewater using adsorbents—a critical review”, Journal of hazardous materials 142, 1–53 (2007)
4.J.-S. Kwon, S.-T. Yun, J.-H. Lee, S.-O. Kim, H. Y. Jo, “Removal of divalent heavy metals (Cd, Cu, Pb, and Zn) and arsenic(III) from aqueous solutions using scoria: kinetics and equilibria of sorption”, Journal of hazardous materials 174, 307–313 (2010)
5.王姮娟、蔡士昌,“重金屬廢水處理技術”,台灣環保產業雙月刊,第二十七期,pp.17-19,(2004)。
6.柯家宇,“重金屬污泥鐵氧磁體安定化之研究”,國立成功大學碩士論文,(2004)。
7.Z. Aksu, I. A. Isoglu, “Removal of copper(II) ions from aqueous solution by biosorption onto agricultural waste sugar beet pulp”, Process biochemistry 40, 3031–3044 (2005)
8.J.-J. Yu, S.-Y. Chou, “Contaminated site remedial investigation and feasibility removal of chlorinated volatile organic compounds from groundwater by activated carbon fiber adsorption”, Chemosphere 41, 371-378 (2000)
9.A. S. Aly, B. D. Jeon, Y. H. Park, “Preparation and evaluation of the chitin derivatives for wastewater treatments”, Journal of applied polymer science 65, 1939-1946 (1997)
10.楊正杰、張鼎張、鄭晃忠,“銅金屬與低介電常數材料與製程”,毫微米通訊第七卷,第四期,pp.40-46,(2000)
11.I. Alp, H. Deveci, H. Sungun, “Utilization of flotation wastes of copper slag as raw material in cement production”, Journal of hazardous materials 159, 390–395 (2008)
12.G. H. Biego, M. Joyeux, P. Hartemann, G. Debry, “Daily intake of essential minerals and metallic micropollutants from foods in France”, The science of the total environment 217, 27–36 (1998)
13.H. Tapiero, D. M. Townsend, K. D. Tew, “Trace elements in human physiology and pathology. copper”, Biomedicine & pharmacotherapy 57, 386–398 (2003)
14.S. S. Sadhra, A. D. Wheatley, H. J. Cross, “Dietary exposure to copper in the european union and its assessment for eu regulatory risk assessment”, Science of the total environment 374, 223–234 (2007)
15.J. P. Grattan, S. I. Huxley, and F. B. Pyatt, “Modern bedouin exposures to copper contamination: an imperial legacy”, Ecotoxicology and environmental Safety 55, 108–115 (2003)
16.A. Gamage, F. Shahidi, “Use of chitosan for the removal of metal ion contaminants and proteins from water”, Food chemistry 104, 989–996 (2007)
17.蔡家樺,“幾丁聚醣摻合PU基材之物性及抑菌研究”,國立中央大學化學工程與材料工程學系碩士論文,(2003)
18.黃光佛、卿勝波、李盛彪、黃世強,“多糖類生物醫用材料—甲殼素和殼聚糖的研究及應用”,高分子通報,第3期,pp.43-49,(2001)
19.P.-H. Chen, T.-Y. Kuo, F.-H. Liu, Y.-H. Hwang, M.-H. Ho, D.-M. Wang, J.-Y. Lai, and H.-J. Hsieh, “Use of dicarboxylic acids to improve and diversify the material properties of porous chitosan membranes”, Journal of agricultural and food chemistry 56 , 9015–9021 (2008)
20.M. Hamdine, M.-C. Heuzey, A. Begin, “Effect of organic and inorganic acids on concentrated chitosan solutions and gels”, International journal of biological macromolecules 37, 134–142 (2005)
21.C. K. S. Pillai, W. Paul, C. P. Sharma, “Chitin and chitosan polymers : chemistry , solubility and fiber formation”, Progress in polymer science 34, 641-678 (2009)
22.曾敬、趙桂貞、段紀東、蘇桂田、孫秋菊、宋學軍、辛士剛,“天然高分子材料-甲殼素和殼聚糖及其衍生物”,瀋陽師範大學學報(自然科學版),第24卷第3期,pp.325-329,(2006)
23.吳彰哲、黃瀚寧,“蝦蟹殼中的寶貝–幾丁質”,科學發展第448期,pp.12-19,(2010)
24.徐薇如,“幾丁聚醣/藻酸鈣生物高分子對重金屬吸附行為之研究”,國立交通大學應用化學研究所碩士論文,(2000)
25.F. Xi, J. Wu, “Macroporous chitosan layer coated on non-porous silica gel as a support for metal chelate affinity chromatographic adsorbent”, Journal of chromatography a, 1057, 41-47 (2004)
26.K. Kofuji, Y. Murata, S. Kawashima, “Sustained insulin release with biodegradation of chitosan gel beads prepared by copper ions”, International journal of pharmaceutics 303, 95-103 (2005)
27.陳澄河,“蝦蟹殼傳奇”,科學發展第369期,pp.62-67,(2003)
28.C. A. Rodrigues, M. C. M. Laranjeira, V. T. d. Favere, “Interaction of Cu (II) on n-(2-pyridylmethyl) and n-(4-pyridylmethyl) chitosan”, Polymer 39, 5121-5126 (1998)
29.M.-Y. Chang, R.-S. Juang, “Adsorption of tannic acid, humic acid, and dyes from water using the composite of chitosan and activated clay”, Journal of colloid and interface science 278, 18-25 (2004)
30.S. Pradhan, S. S. Shukla, K. L. Dorris, “Removal of nickel from aqueous solutions using crab shells”, Journal of hazardous materials b125, 201–204 (2005)
31.S.-T. Lee, F.-L. Mi, Y.-J. Shen, S.-S. Shyu, “Equilibrium and kinetic studies of copper(II) ion uptake by chitosan-ripolyphosphate chelating resin”, Polymer 42, 1879-1892 (2001)
32.Y. Kawamura, M. Mitsushashi, H. T. H. Yoshida, “Adsorption of metal ions on polyaminated highly porous chitosan chelating resin”, Industrial & engineering chemistry research 32 , 386-391 (1993)
33.C. Peniche-Covas, L. W. Alvarez, W. Arguelles-Monal, “The adsorption of mercuric ions by chitosan”, Journal of applied polymer science 46, 1147-1150 (1992)
34.T. Y. Hsien, G. L. Rorrer, “Effects of acylation and crosslinking on the material properties and cadmium ion adsorption capacity of porous chitosan beads”, Separation science and technology 30, 2455-2475 (1995)
35.Z. Cao, H. Ge, S. Lai, “Studies on synthesis and adsorption properties of chitosan cross-linked by glutaraldehyde and Cu(II) as template under microwave irradiation”, European polymer journal 37 , 2141-2143 (2001)
36.R.-S. Juang, F.-C. Wu, R.-L. Tseng, “Solute adsorption and enzyme immobilization on chitosan beads prepared from shrimp shell wastes”, Bioresource technology 80, 187-193 (2001)
37.W. S. W. Ngah, C. S. Endud, R. Mayanar, “Removal of copper(II) ions from aqueous solution onto chitosan and cross-linked chitosan beads”, Reactive & functional polymers 50, 181-190 (2002)
38.T. C. Coelho, R. Laus, A. S. Mangrich, V. T. D. Favere, M. C. M. Laranjeira, “Effect of heparin coating on epichlorohydrin cross-linked chitosan microspheres on the adsorption of copper(II) ions”, Reactive & functional polymers 67, 468-475 (2007)
39.F. Zhao, B. Yu, Z. Yue, T. Wang, X. Wen, Z. Liu, C. Zhao, “Preparation of porous chitosan gel beads for copper(II) ion adsorption”, Journal of hazardous materials 147, 67–73 (2007)
40.K. E. Noll, “Adsorption technology for air and water pollution control”, Lewis publishers (1992)
41.蔡正國,“複合奈米碳管吸附水溶重金屬污染物之應用研究”,國立雲林科技大學環境與安全衛生工程系碩士論文,(2005)
42.M.-Y. Chang, R.-S. Juang, “Adsorption of tannic acid, humic acid, and dyes from water using the composite of chitosan and activated clay”, Journal of colloid and interface science 278, 18-25 (2004)
43.T. Gotoh, K. Matsushima, K.-I. Kikuchi, “Preparation of alginate–chitosan hybrid gel beads and adsorption of divalent metal ions”, Chemosphere 55, 135–140 (2004)
44.G. Rojas, J. Silva, J. A. Flores, A. Rodriguez, M. Ly, H. Maldonado, “Adsorption of chromium onto cross-linked chitosan”, Separation and purification technology 44, 31–36 (2005)
45.Y. S. Ho, G. Mckay, “A comparision of chemisorption kinetic models applied to pollutant removal on various sorbents”, Trans IChemE, Vol 76, Part B , 332-340 (1998)
46.K. C. Justi, V. T. Favere, M. C. M. Laranjeira, A. Neves, R. A. Peralta, “Kinetics and equilibrium adsorption of Cu(II), Cd(II), and Ni(II) ions by chitosan functionalized with 2[-bis-(pyridylmethyl)aminomethyl] -4-methyl-6-formylphenol”, Journal of Colloid and Interface Science 291, 369–374 (2005)
47.V. C. Srivastava, I. D. Mall, I. M. Mishra, “Characterization of mesoporous rice husk (rha) and adsorption kinetics of metal ions from aqueous solution onto rha”, Journal of hazardous materials b134, 257-267 (2006)
48.L. Zhou, Y. Wang, Z. Liu, Q. Huang, “Characteristics of equilibrium, kinetics studies for adsorption of Hg(II), Cu(II) ,and NI(II) ions by thiourea-modified magnetic chitosan microspheres”, Journal of hazardous materials 161, 995-1002 (2009)
49.K. K. Singh, R. Rastogi, S. H. Hasan, “Remaval of Cr(V) wastewater using rice bran”, Journal of colloid and interface science 290, 61-68 (2005)
50.W. S. W. Ngah, S. Fatinathan, “Adsorption characterization of Pb(II) and Cu(II) ions onto chitosan-tripolyphosphate beads: Kinetic, equilibrium and thermodynamic studies”, Journal of environmental management 91, 958-969 (2010)
51.M. Hamdine, M.-C. Heuzey, A. Begin, “Viscoelastic properties of phosphoric and oxalic acid-based chitosan hydrogels”, Rheologica acta 45 , 659-675 (2006)
52.T. Takahashi, M. Imai, I. Suzuki, “Cellular structure in an n-acetyl-chitosan membrane regulate water permeability”, Journal biochemical engineering 42, 20-27 (2008)
53.J. H. Chen, Q. L. Liu, X. H. Zhang, Q. G. Zhang, “Pervaporation and characterization of chitosan membranes cross-linked by 3-aminopropyltriethoxysilane”, Journal of membrane science 292, 125-132 (2007)
54.A. Watthanaphanit, P. Supaphol, T. Furuike, S. Tokura, H. Tamura, R. Rujiravanit, “Novel chitosan-spotted alginate fibers from wet-spinning of alginate solutions containing emulsified chitosan-citrate complex and their characterization”, Biomacromolecules 10, 320-327 (2009)

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top