跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.81) 您好!臺灣時間:2025/10/04 05:25
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林益民
研究生(外文):Yi-Min Lin
論文名稱:損耗基板之去寄生效應法與射頻金氧半場效電晶體雜訊萃取之應用
論文名稱(外文):Lossy Substrate De-embedding Method for RF MOSFET Intrinsic Noise Extraction
指導教授:郭治群
指導教授(外文):Jyh-Chyurn Guo
學位類別:碩士
校院名稱:國立交通大學
系所名稱:電子工程系所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:英文
論文頁數:109
中文關鍵詞:射頻金氧半場效電晶體雜訊元件模型去寄生效應法
外文關鍵詞:RF MOSFETNoiseModelingDe-embedding
相關次數:
  • 被引用被引用:0
  • 點閱點閱:308
  • 評分評分:
  • 下載下載:28
  • 收藏至我的研究室書目清單書目收藏:0
閘極長度為80與65奈米之奈米級金氧半場效電晶體分別擁有高達100與165GHz的截止頻率。但是根據量測得到的雜訊特性,兩者的最低雜訊指數卻沒有因此而有明顯的差異。當閘極偏壓在對應元件最高截止頻率下操作,在頻率10GHz的最低雜訊指數甚至超過5dB。另外,隨著閘極指叉數目增加其最低雜訊指數大幅減小,與指叉數目有很強的關連。上述現象並無法簡單地用閘極阻值因為指叉數目增加並聯後減少所導致的雜訊減低來完全解釋。因此,提出了元件量測雜訊特性之去寄生雜訊效應的方式,以獲得元件之真實特性。
在本論文中,首先整理金氧半電晶體相關的基本雜訊理論與高頻雜訊量測原理及設備,並討論傳統去寄生雜訊的方式以及其缺點。元件本質特性模型的部分,先透過量測電流-電壓特性、轉導以及導納參數校正元件本質特性模型的參數。接著探討不同的測試元件探針墊片佈局方式對量測特性的影響,根據相對應的探針墊片提出新式等校電路模型及其參數萃取方式並經大量實驗結果驗證後,再將探針墊片的等效電路搭配經過準確校正的元件模型構成完整電路,模擬直接量測到的散射參數以及雜訊參數。最後,將表現出高損耗特性的探針墊片模型從完整電路模型中移除,模擬元件之本質特性,最後根據所得到的元件雜訊參數進行分析及探討。
For sub-100nm MOSFETs with the gate length scaling to 80 nm and 65 nm, the unit current gain cut off frequency (fT) can achieve as high as 100 GHz and 165 GHz, respectively. However, the as-measured noise figure shows no much difference between 80 nm and 65 nm devices. The minimum noise figure (NFmin) is even higher than 5dB at 10GHz under gate bias responsible for the maximum fT. Strong finger number dependence of noise figure was also observed. All the mentioned phenomena can not be simply explained by gate resistance reduction through multi-finger structure. It suggests that noise de-embedding is required for the as-measured noise parameters.
In this thesis, the basic noise theory of MOSFET, noise measurement principles and instruments will be covered in the first place. Conventional noise correlation matrix de-embedding method will be reviewed. Regarding the intrinsic MOSFET model, I-V and C-V model calibration have been done based on the measured I-V, transconductance, and admittance by Y-parameters. Then discussion of different probing pad effect on device characterization and the corresponding equivalent circuit model has been established and extensively verified. A new equivalent circuit de-embedding method was proposed. Modeling of as-measured S-parameters and noise parameters was done by incorporating the pad model with a well calibrated MOSEFT model. The lossy pad and lossy substrate de-embedding has been conducted to obtain the intrinsic characteristic. Finally, the intrinsic performance of the device will be analyzed and discussed.
Chinese Abstract……………………………………………………………...………….i
English Abstract……………………………………………..……………………….….ii
Acknowledgement…………………………………………………………………........iv
Contents…………………………………………………………………………….……...v
Figure Caption……..……………………………….………………………………..…vii
Table Caption…………..……………….…………………………..………………......xii
Chapter 1 Introduction
1.1 Motivation…………………………………………………………………...1
1.2 Overview………………………………………..…………………………...2
Chapter 2 Noise Theory and Noise Measurement Technique
2.1 Noise Source………………………………………………………………...4
2.1.1 Thermal Noise…………………………………………………….……5
2.1.2 Thermal Noise in MOSFETs……………………………………...……6
2.2 Two-Port Noise Theory--Noise Parameters……………………………….8
2.2.1 Noise Figure……………………………………………………………8
2.2.2 Noise Parameters……………………………………………………....9
2.3 Thermal Noise Model…………………………………………………...…11
2.4 High Frequency Noise Measurement…………………….………………13
2.4.1 System Configuration………………………………………………...13
2.4.2 System Calibration and Measurement………………………………..14
Chapter 3 RF MOSFET Noise Characterization
3.1 Extrinsic Noise Characteristics……………………………………...……20
3.2 Conventional Noise De-embedding Method……………………………..21
3.2.1 Noise Correlation Matrix De-embedding…………………………….22
3.2.2 De-embedding Results………………………………………………..23
Chapter 4 RF MOSFET Intrinsic I-V and C-V Model Calibration
4.1 I-V and C-V Modeling Theory Valid for Sub-100nm MOSEFT……….34
4.2 Intrinsic I-V Model………………………………………………………..35
4.3 Intrinsic Gate Capacitance (C-V) Model……………………………...…37
Chapter 5 RF MOSFET Noise De-embedding
5.1 Equivalent Circuit Approach………………………………..……………50
5.2 Equivalent Circuit Model Verification…………………………………...53
Chapter 6 RF MOSFET Intrinsic Noise Extraction and Simulation
6.1 MOSFET Intrinsic Noise Parameter Analysis…………………………..77
6.2 MOSFET Noise Current Analysis………………………………………..79
Chapter 7 Conclusions
7.1 Summary………………………………………………………………...…91
7.2 Future Work……………………………………………………….………92
Appendix A Derivation of Noise Parameters…………….……………………...94 Appendix B The Y-Factor Method and Noise Figure Correction…………..97
Appendix C Correlation Matrices Noise De-embedding Method……….…99
Appendix D Modified Open-Short De-embedding………………………...…103
Bibliography…………………………………………………………………………...106
Vita……………………………………………………………………………………….109
[1] C. H. Chen, M. J. Deen, Y. Cheng and M. Matloubian, “Extraction of the Induced Gate Noise, Channel Noise and Their Correlation in Sub-micron MOSFETs from RF Noise Measurements,” IEEE Transactions on Electron Devices, vol. 48, no. 12, pp. 2884-2892, Dec. 2001.
[2] Andries J. Scholten, Luuk F. Tiemeijer, Ronald van Langevelde, Ramon J. Havens, Adrie T. A. Zegers-van Duijnhoven and Vincent C. Venezia, “Noise Modeling for RF CMOS Circuit Simulation,” IEEE Transactions on Electron Devices, vol. ED-50, pp. 618-632, Mar. 2003.
[3] K. Han, J. Gil, S.-S, Song, J.-H. Han, H. Shin, K. Lee and C. Kim, “Complete High Frequency Thermal Noise Modeling of Short-Channel MOSFETs and Design of 5.2GHz Low Noise Amplifier," IEEE Journal of Solid-State Circuits, vol. 40, no. 3, pp. 726-735, Mar. 2005.
[4] G. Knoblinger, P. Klein and H. Tiebout, “A New Model for Thermal Channel Noise of Deep-submicron MOSFETs and Its Application in RF-CMOS Design,” IEEE Journal of Solid-State Circuits, vol. 36, pp. 831-837, May 2001.
[5] Bing Wang, James R. Hellums and Charles G. Sodini, "MOSFET Thermal Noise Modeling for Analog Integrated Circuits," IEEE Journal of Solid-State Circuits, vol. 29, no. 7, pp. 833-835, Jul. 1994.
[6] C. H. Chen and M. J. Deen, “A General Procedure for High-Frequency Noise Parameter De-embedding of MOSFETs by Taking the Capacitive Effects of Metal Interconnections into Account,” IEEE International Conference on Microelectronic Test Structures (ICMTS 2001), Kobe, Japan, pp. 109-114, Mar. 2001.
[7] C. H. Chen and M. J. Deen, “High Frequency Noise of MOSFETs I-Modeling,” Solid-State Electronics, vol. 42, no. 11, pp. 2069-2081, Nov. 1998.
[8] A. van der Ziel, “Noise in Solid State Devices and Circuits,” Chapter 5, John Wiley & Sons, New York, NY, 1986.
[9] T. H. Lee, “The Design of CMOS Radio-Frequency Integrated Circuits,” Chapter 10, Cambridge University Press, New York, NY, 1st Edition, 1998.
[10] Gonzalez Guillermo, “Microwave Transistor Amplifier: Analysis and Design,” Prentice Hall, 1984.
[11] Berkeley BSIM Research Group [On-line] http://www-device.eecs.berkeley.edu/~bsim3/
[12] D. Pancini, G. Nicollini and S. Pernici, “Simulation-oriented Noise Model for MOS Devices,” IEEE Journal of Solid-State Circuits, vol. SC-22, no. 6, pp. 1209-1212, Dec. 1987.
[13] Y. P. Tsividis, "Operation and Modeling of the MOS Transistor," New York, McGraw Hill, 1987.
[14] Agilent Technologies: Advanced Design System 2003C Documentation/Nonlinear Devices/Chapter 5: Devices and Models, MOS.
[15] C. H. Chen and M. J. Deen, “RF CMOS Noise Characterization and Modeling,” International Journal of High Speed Electronics and Systems, vol. 11, no. 4, pp. 1085-1157, 2001.
[16] ATN: NP5B Reference Manual. ATN microwave Inc. Billerica MA, USA, 1990.
[17] P. H. Woerlee, M. J. Knitel, R. v. Langevelde, D. B. M. Klaassen, L. F. Tiemeijer, A. J. Scholten and A. T. Zegers-van Duijnhoven, “RF-CMOS Performance Trends,” IEEE Trans. on Electron Devices, vol. 48, Iss. 8, pp. 1776-1782, 2001.
[18] T. Manku, “Microwave CMOS - Device Physics and Design,” IEEE Journal of Solid-State Circuits, vol. 34, no. 3, pp. 277-285, Mar. 1999.
[19] Joachim N. Burghartz, “Tailoring Logic CMOS for RF Applications,” VLSI-TSI Symposium, Taiwan, 2001.
[20] H. Fukui, “Design of Microwave GaAs MESFET's for Broad-Band Low-Noise Amplifiers,” IEEE Trans. Microwave Theory Tech., vol. MTT-27, pp. 643-650, July 1979.
[21] H. Hillbrand and P. H. Russer, “An Efficient Method for Computer Aided Noise Analysis of Linear Amplifier Networks,” IEEE Transactions on Circuits and Systems, vol. 23, no. 4, pp. 235-238, Apr. 1976.
[22] HP 4155B/4156B Semiconductor Parameter Analyzer Product Note 4 [On-line] http://www.home.agilent.com/
[23] M. C. A. M. Koolen, J. A. M. Geelen and M. P. J. G. Versleijen, “An Improved De-embedding Technique for On-wafer High-frequency Characterization,” IEEE Bipolar Circuits and Technology Meeting, pp. 188-191, Sep. 1991.
[24] S. Lee and H. K. Yu, “Parameter Extraction Technique for the Small-Signal Equivalent Circuit Model of Microwave Silicon MOSFET’s,” Proc. IEEE High Speed Semiconductor Devices and Circuits Conf., pp. 182-191, 1997.
[25] X. Jin, J. J. Ou, C. H. Chen, W. Liu, M. J. Deen, P.R. Gray and C. Hu, “An Effective Gate Resistance Model for CMOS RF and Noise Modeling,” International Electron Device Meeting (IEDM 98), pp. 961-964, 1998
[26] Yuhua Cheng and Mishel Matloubian, “On the High-Frequency Characteristics of Substrate Resistance in RF MOSFETs,” IEEE Electron Device Letters, vol. 21, no.12, pp. 604-606, Dec. 2000.
[27] H. W. Lin, S. S. Chung, S. C. Wong, and G. W. Huang, “An Accurate RF CMOS Gate Resistance Model Compatible with HSPICE,” Proc. ICMTS '04. The International Conference on Microelectronic Test Structures, vol. 17, pp. 227-230, Mar. 2004.
[28] Agilent Technologies : Fundamentals of RF and Microwave Noise Figure Measurements – Application Note 57-1 and 57-2 [on-line] http://www.agilent.com
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 朱景鵬 〈區域主義、區域整合與兩岸整合問題之探討〉>中國大陸研究 第42卷第8期 1999/8  
2. 周志龍 〈兩岸三通、全球化與臺灣經濟圈的再結構想像〉理論與政策 第14卷第4期 2000/12 
3. 董立文 〈全球化的衝擊下的兩岸關係〉國際事務季刊 第3期
4. 邱政宗 〈國際協定「排除條款」的選擇及存廢爭議—兼議我國入會後三通及戒急用忍政策調整〉立法院院聞 第29卷第5期
5. 施正鋒 〈「國與國關係」論述與台、美關係〉政策月刊 第50期 
6. 顏建發 〈從政治經濟的觀點談加WTO後兩岸三通的展望〉國際事務季刊第3期 
7. 蘇宏達 〈從制度主義解析歐洲聯盟憲法條約草案〉 政治科學論叢 第20期 2004/6/頁167~208
8. 高孔廉、鄧岱賢 〈區域經濟整合給台灣經濟發展的啟示〉 國家政策論壇 2004/1
9. 王思粵 〈兩岸「三通」的近況與開放直航對台灣總體經濟的影響〉 經濟前瞻2002/7/5日 
10. 宋興洲 〈兩岸關係的突破:從風險、信任到和解〉全球政治評論 第6期 2004/4
11. 龔明鑫 〈提昇合灣產業競爭力之挑戰與對策〉 兩岸經貿月刊第135期 2004/3
12. 卓慧菀 〈WTO共同會籍與兩岸整合之探討〉 全球政治評論 第5期2004/1 
13. 譚瑾瑜 〈從中港簽訂CEPA談中國大陸區域整合進度及其對台灣的影響〉國家政策論壇季刊 春季號 2004/1
14. 張顯超 〈兩岸三通的開放調整與協商〉 中國大陸研究第46卷第6期 2003/11、12月
15. 張五岳 〈兩岸直接三通的政經評析〉 經濟前瞻 2002/9