英文文獻
[1] Agrawal, R., Imieliski, T., & Swami, A. (1993). Mining association rules between sets of items in large databases. In Proceedings of the 1993 ACM SIGMOD international conference on Management of data (pp. 207-216). ACM New York, NY, USA.
[2] Agrawal, R., & Srikant, R. (1994). Fast algorithms for mining association rules. In Proc. 20th Int. Conf. Very Large Data Bases, VLDB (Vol. 1215, pp. 487–499).
[3] Anamanamuri, S., Ghosh, A., Prohaska, D., & Siddiqui, A. (2003). Data Mining MSCS228(Multi-level Association Rule Mining in Weka-3-2-3). Retrieved May 9, 2009, from http://www.mscs.mu.edu/~cstruble/class/mscs228/fall2003/project/group4/.
[4] Berry, M. J., & Linoff, G. (1997a). Data Mining Techniques: for marketing, sales, and customer support. John Wiley & Sons, Inc. New York, NY, USA.
[5] Berry, M. J. A., & Linoff, G. S. (1997b). Data mining techniques: for marketing, sales, and customer relationship management. Wiley Computer Publishing.
[6] Berry, M. J. A., & Linoff, G. S. (2004). Data mining techniques: for marketing, sales, and customer relationship management. Wiley Computer Publishing.
[7] Berson, A., Smith, S., & Thearling, K. (1999). Building data mining applications for CRM. McGraw-Hill Professional.
[8] Bogorny, V., Palma, A. T., Engel, P., & Alvares, L. O. (2006). Weka-gdpm: Integrating classical data mining toolkit to geographic information systems. In 2nd SBBD Workshop on Data Mining Algorithms and Applications (WAAMD'06) (pp. 9-16).
[9] Chan, L. M. (1996). Classification, present and future. Cataloging & Classification Quarterly, 21(2), 5-17.
[10] Fayyad, U., Piatetsky-Shapiro, G., & Smyth, P. (1996a). From data mining to knowledge discovery in databases. Communications of the ACM, 39(11), 24-26.
[11] Fayyad, U., Piatetsky-Shapiro, G., & Smyth, P. (1996b). The KDD process for extracting useful knowledge from volumes of data.
[12] Frank, E., Hall, M., Trigg, L., Holmes, G., & Witten, I. H. (2004). Data mining in bioinformatics using Weka (Vol. 20). Oxford Univ Press.
[13] Frawley, W. J., Piatetsky-Shapiro, G., & Matheus, C. J. (1992). Knowledge discovery in databases: An overview. Ai Magazine, 13(3), 57-70.
[14] Garner, S. R. (1995). Weka: The waikato environment for knowledge analysis. In Proc. of the New Zealand Computer Science Research Students Conference (pp. 57-64).
[15] Geller, J., Scherl, R., & Perl, Y. (2002). Mining the web for target marketing information. In Proceedings of CollECTeR (pp. 65-72). ACM Press.
[16] Guape, F. H., & Owrang, M. M. (1995). Database mining discovering new knowledge and cooperative advantage. Information Systems Management, 12, 26-31.
[17] Han, J., & Fu, Y. (1995). Discovery of multiple-level association rules from large databases. In In Proc. 1995 Int. Conf. Very Large Data Bases.
[18] Han, J., & Kamber, M. (2006). Data mining: concepts and techniques. Morgan Kaufmann.
[19] Han, J., Pei, J., Yin, Y., & Mao, R. (2004). Mining frequent patterns without candidate generation: A frequent-pattern tree approach. Data Mining and Knowledge Discovery, 8(1), 53-87.
[20] Kaufman, L., & Rousseeuw, P. J. (1990). Finding groups in data: an introduction to cluster analysis. New York.
[21] Kent, A. (1979). Use of Library Materials: The University of Pittsburgh Study.
[22] Lancaster, F. W., & LANCASTER, F. (1987). If you want to evaluate your library. London.
[23] Linoff, G., & Berry, M. (2000). Mastering Data Mining: The Art and Science of Customer Relationship Management. John Wiley and Sons.
[24] Olmeda, I., & Sheldon, P. J. (2002). Data mining techniques and applications for tourism Internet marketing. Journal of Travel & Tourism Marketing, 11(2), 1-20.
[25] Peacock, P. R. (1998). Data Mining in Marketing: Part 2-Dig deep to unearth knowledge inherent in databases. Marketing management, 7, 14-25.
[26] Pei, J., Han, J., Lu, H., Nishio, S., Tang, S., & Yang, D. (2001). H-Mine: Hyper-structure mining of frequent patterns in large databases. In Proceedings of the 2001 IEEE International Conference on Data Mining (pp. 441-448). IEEE Computer Society Washington, DC, USA.
[27] Piatetsky-Shapiro, G. (1991). Knowledge discovery in real databases: A report on the IJCAI-89 Workshop. AI magazine, 11(5), 68-70.
[28] Pu, H. T. (2002). Discovery of user-oriented class associations for enriching library classification schemes. Proceedings of the American Society for Information Science and Technology, 39(1).
[29] Ranganathan, S. R. (1931). The Five Laws of Library Science. E. Goldston.
[30] Richard, J. R., & Michael, W. (2003). Data Mining--A Tutorial-Based Primer. Pearson Education, Inc.
[31] Sabharwal, C. L., Hacke, K. R., & Clair, D. C. S. (1992). Formation of clusters and resolution of ordinal attributes in ID3 classification trees. In Proceedings of the 1992 ACM/SIGAPP Symposium on Applied computing: technological challenges of the 1990's (pp. 590-597). ACM New York, NY, USA.
[32] Siddiqui, A., & Anamanamuri, D. (2003). Implementation of Multiple-Level Association Rule Mining in Weka. Retrieved June 2, 2009, from http://www.mscs.mu.edu/~cstruble/class/mscs228/fall2003/project/group4/.
[33] Smith, K. A., Willis, R. J., & Brooks, M. (2000). An analysis of customer retention and insurance claim patterns using data mining: a case study. Journal of the Operational Research Society, 532-541.
[34] Solomon, P. (1992). User-based methods for classification development. Advances in Classification Research, 2, 163-70.
[35] Srikant, R., & Agrawal, R. (1995). Mining generalized association rules. In Proceedings of the International Conference on very large Data Bases (pp. 407-419). INSTITUTE OF ELECTRICAL & ELECTRONICS ENGINEERS (IEEE).
[36] Srikant, R., & Agrawal, R. (1996). Mining sequential patterns: Generalizations and performance improvements. In Advances in Database Technology--EDBT'96: 5th International Conference on Extending Database Technology, Avignon, France, March 25-29, 1996: Proceedings (p. 3). Springer.
[37] Symeonidis, A. L., Mitkas, P. A., & Kehagias, D. (2002). Mining patterns and rules for improving agent intelligence through an integrated multi-agent platform. In 6th IASTED International Conference, Artificial Intelligence and Soft Computing ASC, Banff, Alberta, Canada.
中文文獻
[1] 卜小蝶,2001,“以圖書借閱記錄探勘加強圖書資源利用之探討”,中國圖書館學會會報,66期,頁59-72。
[2] 卜小蝶,2002,“使用者導向之圖書分類關聯分析研究”,圖書資訊學刊,(17),頁81-94。[3] 中國圖書館學會,2000,圖書館事業發展白皮書,中國圖書館學會,台北市。
[4] 王毓菁,2002,圖書館閱覽者群組潛在特徵探勘資訊系統,華梵大學,碩士論文。[5] 台灣評鑑協會,2009,98年度至102年度科技大學技院評鑑指標,台灣評鑑協會:Retrieved from http://www.twaea.org.tw/download/98年度至102年度科技大學技院評鑑指標.rar。
[6] 余明哲,2003,圖書館個人化館藏推薦系統,國立交通大學,碩士論文。[7] 吳安琪,2001,利用資料探勘的技術及統計的方法增強圖書館的經營與服務,國立交通大學,碩士論文。[8] 吳聲弘,2004,漸增式跨階層次高效率關聯規則探勘,南台科技大學,碩士論文。[9] 呂家賢,2005,運用資料探勘技術於大學圖書館圖書資源推廣利用之研究,銘傳大學,碩士論文。[10] 李明修,2007,應用資料探勘技術分析圖書館閱覽者行為,朝陽科技大學,碩士論文。[11] 沈寶環,1992,圖書館學概論,國立空中大學,臺北縣蘆洲鄉。
[12] 周政毅,2008,應用分群與分類演算法於上呼吸道感染病人之症狀屬性分類規則研究,靜宜大學,碩士論文。[13] 林傑斌、劉明德、陳湘,2002,資料採掘與 OLAP 理論與實務,文魁資訊,臺北市。
[14] 林湧順,2005,以資料探勘技術探討高中生使用圖書館之行為模式--以國立台灣師範大學附屬高級中學為例,國立臺灣師範大學,碩士論文。[15] 邱名妤,2006,資料探勘方法應用於圖書館藏推薦,玄奘大學,碩士論文。[16] 洪志淵,2001,圖書流通記錄之一般化相關規則找尋之研究,國立中山大學,碩士論文。[17] 胡述兆,2003,“為圖書館建構一個新的定義”,圖書館學研究,1期,頁2-4。
[18] 胡述兆、吳祖善,1991,圖書館學導論,漢美書局,台北市。
[19] 孫冠華,2000,圖書館新書推薦之個人化服務方法,國立中山大學,碩士論文。[20] 徐昌慧,2009,“科技大學暨技術學院評鑑之指標修訂及未來發展”,評鑑雙月刊,18期,頁36-40。[21] 康勝修,2006,應用資料探勘技術於圖書館借閱紀錄分析與館藏查詢服務,雲林科技大學,碩士論文。[22] 張鼎鍾,1991,圖書館自動化導論,中國國書館學會,台北市。
[23] 張慶昌,2007,應用資料探勘技術於國小學童圖書借閱之研究,臺北市立教育大學,碩士論文。[24] 曹健華,2003,應用資料探勘技術於數位圖書館之個人化服務及管理,南華大學,碩士論文。[25] 莊宛螢,2006,加權移動視窗模式之圖書資料探勘,明新科技大學,碩士論文。[26] 陳海鳴,1982,企業組織與管理,華泰文化,台北市。
[27] 曾勇森,2003,利用資料探勘技術增進圖書館之服務效益,南台科技大學,碩士論文。[28] 曾憲雄、蔡秀滿、蘇東興、曾秋蓉、王慶堯,2005,資料探勘,台北市,旗標。
[29] 程麟雅,2004,圖書館管理析論,文華,台北市。
[30] 黃宗忠,1995,圖書館管理學,圖書情報資訊系列,天肯文化,台北縣永和市。
[31] 黃淑霞,2008,資料探勘的技術於圖書館借閱歷程分析及推薦系統,國立東華大學,碩士論文。[32] 黃謙順、卓建安,2006,“整合顧客價值及關聯規則之利潤探勘” ,台北大學,台北縣。
[33] 廖又生,1993,“論圖書館管理、圖書館行政與圖書館組織之關聯性”,中國圖書館學會會報,51期,頁153-169。[34] 蔡介元、張百棧、王錫中,2003,“運用關聯規則技術與類神經網路於產品開發設計之研究”,工業工程學刊,20卷,2期,頁101-112。[35] 盧秀菊,2001,“知識管理在圖書館管理應用之可行性”,台北市立圖書館館訊,18卷,4期。
[36] 賴永祥,2001,中國圖書分類法,文華出版社,台北市。
[37] 賴雨廷,2003,利用資料探勘技術應用於圖書館新書推薦之研究,國立中山大學,碩士論文。[38] 戴玉旻,2002,圖書館使用者借閱歷史記錄探勘系統,國立交通大學,碩士論文。[39] 謝建成、林湧順,2006,“書目探勘讀者使用圖書館之行為”,教育資料與圖書館學,44卷,1期,頁35-60。