跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.59) 您好!臺灣時間:2025/10/14 08:56
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃博陽
研究生(外文):Bo-Yang Huang
論文名稱:微乳液的物理化學特性與穩定度之研究
論文名稱(外文):Study of physicochemical properties and stability of microemulsions
指導教授:陳文章陳文章引用關係
口試委員:林振隆廖義田蘇文達
口試日期:2011-07-12
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:化學工程研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:60
中文關鍵詞:微乳液假三元相圖電導度穩定度
外文關鍵詞:microemulsionspseudo-ternary phase diagramconductivitystability
相關次數:
  • 被引用被引用:1
  • 點閱點閱:1632
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
微乳液是由水、油、界面活性劑和助界面活性劑在適當的比例下自發形成外觀透明或半透明、低黏度和各向同性的熱力學穩定分散系統。微乳液應用在儲存、運輸、包裝和物理等用途,因此在製藥及化妝品領域有極大潛力。
經過篩選而選用肉荳蔻酸異丙酯(IPM)作為油相、聚氧乙烯山梨醇單油酸酯(Tween 80)作為界面活性劑、異丙醇(IPA)為助界面活性劑和水為微乳液的系統,應用滴定法製備微乳液,首先探討微乳液最大溶解水量受不同Tween 80與異丙醇重量比值(Km)的影響,得到最佳Km=1:1、3:2、2:1下佔有相圖最大的微乳相區域面積。選用最佳Km在不同混合界面活性劑比油的比例,繪製在25℃的假三元相圖可推估微乳液所佔的面積大小。使用電導法和染色法鑑別微乳液結構,電導法可測量電導度對含水量的曲線變化,將整個微乳液單相區區分成油包水(W/O)型微乳液、雙連續相(B.C.)型微乳液、水包油(O/W)型微乳液,染色法可同時滴加紅色油性墨水和水溶性染料甲基藍在不同類型微乳液中,比較擴散速度快慢。應用假三元相圖之各組成區域可作為選擇最佳微乳液之配方,且需要結合穩定度的觀察來確定形成微乳液的最佳條件,先由相圖之各組成區域選擇適合的配方,再測量粒徑大小、體積、pH值與溫度變化和表面張力來獲得微乳液穩定度分析結果。
實驗結果顯示經過15天內變化情況,可得到O/W型微乳液之平均粒徑在10~30nm,而pH值範圍為5.16~5.98,體積之變化穩定度順序為Km=3:2 >Km=2:1>Km=1:1,溫度變化中Km=1:1和3:2不會發生相轉變溫度(PIT),其中Km=2:1判斷出微乳液之相轉變溫度為40℃,表面張力約為30 mN/m。


Microemulsions are clear or translucent, isotropic and low-viscosity, and thermodynamically stable dispersion systems which are spontaneously generated from an appropriate ratio of water, oil, surfactant and cosurfactant. Moreover, microemulsions have great potential in the pharmaceutical and cosmetic field due to the advantageous application in storage, transport, packaging and physics.
After a series of screening tests, isopropyl myristate (IPM) was selected as an oil phase, polyoxyethylene sorbitan monooleate (Tween 80) as a surfactant, isopropyl alcohol (IPA) as a cosurfactant and water as an immiscible phase of the microemulsions. The compositions of microemulsoins were prepared by titration methods. Firstly, optimal formulations of microemulsions at the largest water solubility for different weight ratio (Km) of Tween 80 and isopropyl alcohol were explored and the largest compostion area of microemulsions was acquired at respective values of Km = 1:1, 3:2 and 2:1 through the construction of pseudo-ternary phase diagrams at 25°C. Second, both the conductivity method and dyeing method were adopted to distinguish the biphasic behavior of microemulsions. Conductivity method was used to measure the conductivity of the various weight fractions of the aqueous phase and then categorize the biphasic region of microemulsions into three types of water-in-oil (W/O), bicontinuous (B.C.) and oil-in-water (O/W) microemulsions. Furthermore, dyeing method involved simultaneously adding droplets of oil-soluble red ink and water-soluble methylene blue in different types of microemulsions to compare the dispersion rates of dyes. Subsequently, the optimal formulation of microemulsions was verified by selection of the appropriate compositions of microemulsions within pseudo-ternary phase diagrams and by observation of its biphasic stability. Besides, the long-term experimental stability of microemulsions of the optimal formulations selected from the diagram were investigated through the measurements of parameters like particle size, volume, pH value and surface tension as a function of time at various temperatures.
By observing the changes in stability testing parameters for 15 days, experimental results revealed that average particle size of O/W microemulsions was 10~30nm and the pH value range was 5.16~5.98. Changes of volume for three types of microemulsions indicated that the biphasic stabilities for 15 days decreased in the oder as Km=3:2 >Km=2:1>Km=1:1. As the temperature changed, phase inversion temperature (PIT) for microemulsions prepared with Km=2:1 was 40°C, and its surface tension at 25°C was about 30 mN/m. However, PIT did not occur for microemulsions prepared with Km=1:1 and 3:2.


摘 要 I
ABSTRACT III
誌謝 V
目錄 VI
表目錄 VIII
圖目錄 IX
第一章 緒論 - 1 -
1.1研究動機 - 1 -
1.2 研究目的 - 2 -
第二章 文獻回顧 - 3 -
2.1界面活性劑之性質 - 3 -
2.1.1 界面活性劑之分類 - 3 -
2.1.2 微胞與逆微胞 - 5 -
2.1.3界面活性劑之選用方法 - 7 -
2.2乳液之性質 - 9 -
2.2.1乳液之種類及特性 - 9 -
2.2.2奈米乳液和微乳液的差異 - 10 -
2.3微乳液的簡介 - 12 -
2.3.1微乳液之分類 - 12 -
2.3.2微乳液之熱力學穩定性 - 16 -
2.3.3微乳液之應用 - 16 -
2.4 微乳液形成、結構、影響 - 17 -
2.4.1微乳液形成的原理 - 17 -
2.4.2結構理論 - 18 -
2.4.3助界面活性劑對微乳液之影響 - 19 -
2.5 微乳液性質之量測與相圖 - 20 -
2.5.1 光散射 - 20 -
2.5.2 電導度 - 21 -
2.5.3 相圖 - 24 -
2.5.4 流變學 - 25 -
第三章 實驗儀器器材、藥品與方法 - 26 -
3.1 實驗儀器及操作 - 26 -
3.2 實驗藥品及其結構式 - 28 -
3.2.1藥品 - 28 -
3.2.2結構式及其簡介 - 28 -
3.3 實驗方法與步驟 - 30 -
3.3.1 微乳液的製備與配方組成 - 31 -
3.3.2微乳液的穩定度分析 - 32 -
第四章 實驗結果與討論 - 34 -
4.1 微乳液的相行為 - 34 -
4.1.1篩選界面活性劑和助界面活性劑 - 34 -
4.1.2選擇最佳Km - 34 -
4.1.3繪製假三元相圖 - 36 -
4.2鑑別微乳液類型 - 38 -
4.2.1 電導度法鑑別微乳液類型 - 38 -
4.2.2以染色法鑑別微乳液類型 - 46 -
4.3 微乳液的穩定度分析 - 47 -
4.3.1 粒徑大小變化 - 47 -
4.3.2 pH值變化 - 49 -
4.3.3 體積變化 - 51 -
4.3.4 溫度變化 - 53 -
4.3.5 表面張力 - 54 -
第五章 結論與建議 - 55 -
5.1 結論 - 55 -
5.2 建議 - 56 -
參考文獻 - 57 -
附錄A - 60 -


[1]吳偉宏,界面活性劑之生物分解、界面相關性質之研究,碩士論文,國立臺北科技大學化學工程研究所,(2010)。
[2]林清安、丁幸一、林德培編著,界面活性劑化學,民國71再版,p.7-12, 23-41。
[3]Rosen, M. J. Surfactants and Interfacial Phenomena, 2nd ed., John Wiley & Sons, Inc., (1989).
[4]李潔如、牟中原,“微胞、微乳液的形成”,科學月刊,298 (1994)。
[5]邱文慧,荷荷芭油奈米乳液之製備及物性探討,博士論文,靜宜大學應用化學研究所 (2006)。
[6]王鳳英,界面活性劑的原理與應用;高立圖書公司:台北,1989,P109-126。
[7]K. Shinoda, H. Kunieda, Phase properties of emulsions: PIT and HLB in encyclopedia of emulsion technology, Vol.1, P. Becher, Marcel Dekker, Inc., New York, (1983) 337-367.
[8]劉正偉,“苯乙烯微乳液與微乳化聚合反應-共同界面活性劑之效應”,碩士論文,國立臺灣科技大學化學工程學系研究所,民國87年。
[9]陳崇賢,乳液概論,界面科學會誌,1996,19(1),p.1-12。
[10]W. J. Chen, “Polyelectrolyte-Surfactant Interaction and Its Influence on Flocculation and Coalescence of Oil-in-Water Emulsions”, J. Chin. Inst. Chem. Engrs., Vol. 32, No. 2, 95-107, (2001).
[11]Th.F. Tadros, P. Izquierdo, J. Esquena, C. Solans, Formation and stability of nano-emulsions, Adv. Colloid Interface Sci. 108-109, 303-318(2004).
[12]J. Jiao and D. J. Burgess, Ostwald ripening of water-in-hydrocarbon emulsions, Journal of Colloid and Interface Science. 264, 509-516(2003).
[13]M. Antonietti, K. Landfester, Polyreactions in miniemulsions, Prog. Polym. Sci. 27, 689-757(2002)
[14]J. M. Asua, Miniemulsion polymerization. Progress in Polymer Science, 27, 1283-1346 (2002).
[15]N. Anton, Th.F. Vandamme, The universality of low-energy nanoemulsification. Int. J. Pharm. 377:142–147(2009).
[16]N. Anton, J. Benoit, P. Saulnier, “Design and production of nanoparticles formulated from nano-emulsion templates - a review. J. Control. Release, 128, 185-199(2008).
[17]郭俊賢、殷正華、蔣亞婷、林翠芊、郭光輝,奈米科技專利研究系列Vol7:奈米生技化粧品專利地圖及分析,行政院國家科學委員會科學技術資料中心出版,2004年。
[18]N. Anton and Th. F. Vandamme,“Nano-emulsions and Micro-emulsions:Clarifications of the Critical Differences”,Pharm Res, 28, 978-9858(2011).
[19]M. Kahlweit, G. Busse, B. Faulhaber, J. Jen, Shape changes of globules in nonionic microemulsions. J Phys Chem. 100:14, 991–4(1996).
[20]紀又文,“含維生素C及其衍生物之微乳液製備”,碩士論文,嘉南藥理科技大學化粧品科技研究所,民國99年。
[21]T. P. Hoar and J. H. Schulman, Transparent water in oil dispersions: oleopathic hydromicelle, Nature (Lond.) , 152, 102-103 (1943).
[22]I. Danielsson and B. Lindman, The definition of a microemulsion, Colloids surfactant, 3, 391-392 (1981).
[23]連大成,W/O型微乳液液滴之電荷分佈量測,國立中央大學碩士學位論文,2001年。
[24]R. G. Alany, G. M.El Maghraby, K. Krauel-Goellner, A. Graf, “Microemulsions: Properties and Applications,” ed. by Fanun M., CRC Press, Boca Raton, 2006.
[25]D. Langevin, Adv. Colloid. Interface Sci., 34, 583 (1991).
[26]D. A. Winsor, Trans Faraday Soc., 44, 376 (1948).
[27]D. Andelman, M. E. Cates, D.Rouk and S. A. Satran, J. Chem. Phys., 87, 7229 (1987).
[28]俞鵬勇,王樹華,詹曉力,陳豐秋,羅正鴻,氨基矽油微乳液的製備及其穩定機理模型,化學通報2002年第65卷。
[29]L. M. Prince, Microemulsions Theory and Practice. New York: Academic Press,1977:83 88.
[30]崔正剛,殷福珊,微乳化技術及應用,中國輕工業出版社,1999,p.83~99。
[31]M. Bourrel, R. S. Schechter. Microemulsion and Related Systems: Formulation, Solvercy, and Physical Properties. Chapter 1, Surfactant Science Series Vol.30, New York and Basel: Marcel Dekker,Inc., 1988:15 25
[32]李干佐,郭荣,微乳液理論及其應用,中國石油工業出版社,1995,p.47~64。
[33]羅靜卿、趙新華、周固,CTAB/正丁醇-正辛烷-水和鹽水的擬三元體系相圖及微乳液微觀結構的電導研究,高等學校化學學報,2004年第25卷第6期。
[34]A. C. Lam, R. S. Schechter. J. Colloid Interface Sci, 120(1): 43(1987).
[35]A. C. Lam , R. S. Schechter. J. Colloid Interface Sci, 120(1): 57(1987).
[36]F.F. Lv, L.Q. Zheng, C.H.Tung, Phase behavior of the microemulsions and the stability of the chloramphenicol in the microemulsion-based ocular drug delivery system. International J. Pharmaceutics 301:237-46(2005).
[37]J. Fang, J. Colloid Interface Sci., 116: 269(1978)
[38]B. Lagourette , J. Peyrelasse. Nature, 281(6): 60(1979).
[39]A. Lada,, L. Lang,, R. Zana, Phys. Chem., 93, 10(1989)
[40]M. Mo, H. Zhong and Q. Zhong, Investigation of structure and structural transition in microemulsion systems of sodium dodecyl sulfonate + n-heptane + n-butanol + water by cyclic voltammetric and electrical conductivity measurements, J. Electroanal. Chem., 493, 100–107(2000).
[41]S.K. Mehta, R.K. Dewan and K. Bala, Percolation phenomenon and the study of conductivity, viscosity and ultrasonic velocity in microemulsions. Phys. Rev. E 50, 4759–4762(1994).
[42]S. Zargar-Shoshtari, J. Wen, R.G. Alany, Formulation and physicochemical characterization of imwitor 308 based self microemulsifying drug delivery systems. Chem Pharm Bull (Tokyo). 58(10):1332-8(2010).
[43]李承祐,以Tween 80為碳源生產Acinetobacter radioresistens脂肪酵素,國立成功大學博士論文,2004。


連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top