|
[1] D. H. Wolpert, W. G. Macready, No free lunch theorems for search, Tech. Rep. SFI-TR-95-02-010, Santa Fe Institute (1995). [2] D. H. Wolpert, W. G. Macready, No free lunch theorems for optimization, IEEE Transactions on Evolutionary Computation 4 (1997) 67-82. [3] J. C. Culberson, On the futility of blind search: An algorithmic view of no free lunch", Evolutionary Computation 6 (1998) 109-127. [4] S. Droste, T. Jansen, I. Wegener, Perhaps not a free lunch but at least a free appe- tizer, Tech. Rep. ISSN 1433-3325, Department of Computer Science, University of Dortmund (1998). [5] S. Droste, T. Jansen, I. Wegener, Optimization with randomized search heuristics - the (a)n° theorem, realistic scenarios, and di±cult functions, Theoretical Computer Science 287 (2002) 131-144. [6] M. J. Streeter, Two broad classes of functions for which a no free lunch result does not hold, in: Proceedings of the Genetic and Evolutionary Computation Conference 2003, 2003, pp. 1418-1430. [7] S. Christensen, F. Oppacher, What can we learn from no free lunch? a first attempt to characterize the concept of a searchable function, in: Proceedings of the Genetic and Evolutionary Computation Conference 2001, 2001, pp. 1219-1226. [8] D. Whitley, J. Rowe, Subthreshold-seeking local search, Theoretical Computer Sci- ence 361 (2006) 2-17. [9] C. Schumacher, M. D. Vose, L. D. Whitley, The no free lunch and problem description length, in: Proceedings of the Genetic and Evolutionary Computation Conference 2001, 2001, pp. 565-570. [10] R. Courant, F. John, Introduction to Calculus and Analysis, Vol. 1, Vol. 1, Springer- Verlag, 1989. [11] T. H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein, Introduction to Algorithms, 2nd Edition, The MIT Press, 2001. [12] R. Motwani, P. Raghavan, Randomized Algorithms, Cambridge University Press, 1995. [13] I. Rechenberg, Evolutionsstrategie '94, Frommann Holzboog, 1994. [14] J. J�軻gersk�鈉pper, Algorithmic analysis of a basic evolutionary algorithm for continu- ous optimization, Theoretical Computer Science 379 (3) (2007) 329-347. [15] C. Robert, G. Casella, Monte Carlo Statistical Methods, Springer-Verlag, 1999. [16] Y. S. Chow, H. Teicher, Probability theory: independence, interchangeability, mar- tingales, 3rd Edition, Springer, 1997. [17] W. Hoe��ding, Probability inequalities for sums of bounded random variables, Journal of the American Statistical Association 58 (1963) 13-30. [18] M. Mitzenmacher, E. Upfal, Probability and Computing: Randomized Algorithms and Probabilistic Analysis, Cambridge University Press, 2005. [19] A. Broder, Generating random spanning trees, in: Foundations of Computer Science 1989, 1989, pp. 442-447. [20] R. Aleliunas, R. Karp, R. Lipton, L. Lovasz, C. Racko, Random walks, univer- sal traversal sequences, and the complexity of maze problems, in: Foundations of Computer Science 1979, 1979, pp. 218-233. [21] A. Broder, E. Shamir, On the second eigenvalue of random regular graphs, in: Foun- dations of Computer Science 1987, 1987, pp. 286-294. [22] A. Broder, A. Karlin, Bounds on cover times, Journal of Theoretical Probability 2 (1989) 101-120. [23] Z. F�鈉redi, J. Koml�鷬s, The eigenvalues of random symmetric matrices, Combinatorica 1 (1981) 233-241. [24] R. Y. Rubinstein, D. P. Kroese, Simulation and the Monte Carlo Method, 2nd Edi- tion, Wiley, 2007.
|