跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.176) 您好!臺灣時間:2025/09/08 07:26
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:涂凱文
研究生(外文):Kai-Wen Tu
論文名稱:利用統計方法自動依工程忍受度判斷機台差異及其在半導體製程改善之應用
論文名稱(外文):A New Statistical Method for Automatic Partitioning Tools According to Engineers’ Tolerance Control in Process Improvement
指導教授:盧鴻興盧鴻興引用關係
指導教授(外文):Horng-Shing Lu
學位類別:博士
校院名稱:國立交通大學
系所名稱:統計學研究所
學門:數學及統計學門
學類:統計學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:英文
論文頁數:88
中文關鍵詞:貝氏分析資料探勘RJMCMCCART量率提升製程能力指標APC
外文關鍵詞:Bayesian fitdata miningreversible jump Markov chain Monte CarloCARTyield enhancementprocess capabilityAPC
相關次數:
  • 被引用被引用:0
  • 點閱點閱:958
  • 評分評分:
  • 下載下載:113
  • 收藏至我的研究室書目清單書目收藏:0
在半導體產業, 機台表現之比較是提升量率的關鍵之一,
我們發展一套新的統計方法, TCP.不但可以適用在機台使用率不相同造成之樣本數不同之現象亦可主動依工程師設定之工程忍受度將機台分群,可大幅縮短工程師分析機台表現之時間,我們將提供統計模擬來說明我們方法之優點也提供兩個半導體業界之實例說明我們的方法可適用在量率提升與製程能力提升
In the semiconductor industry, tool comparison is a key task in the yield and the product quality enhancements. We developed a new method, called tolerance control partitioning (TCP), to automatically partition tools into several homogenous groups based on the related metrology results. This methodology is based on a hierarchical normal model and the implementation is carried out using a Bayesian approach. There are several advantages of using the TCP method. First, it takes into account the unbalanced usage of the tools in the manufacturing processes. Moreover, the “engineer’s tolerance control” can be incorporated into the TCP method via the specification of the priors in the Bayesian analysis, which justifies the significant difference between groups according to the experts’ knowledge. This specification not only has the advantage of adjusting the number of partition groups but also avoids the problem of having too many partition groups with small differences which is often encountered in the conventional approaches. Some simulation results illustrate the advantages of the TCP method compared to the method of classification and regression trees (CART). Moreover, the TCP method is applied to two real examples for the yield and Cp/Cpk enhancement in the semiconductor industry. Both results confirm the practical usefulness of the proposed method. For general applications, the TCP method is also useful for other similar problems such as the comparisons between several experimental recipes or the comparisons between different materials.
Contents
Abstract ……………………………………………………………i
Acknowledgements…………………………………………………iii
1. Introduction…………………………………………………… 1
2. Methodologies……………………………………………………9
2.1 A Hierarchical Bayesian Model for Partition Problems.9
2.2 Reversible Jump Markov Chain Monte Carlo………………12
2.3 TCP Method for Tool Partitions ………………………… 15
2.4 Guidelines for Choosing Initial Values for Parameters and Hyperparameters in TCP………………………………………19
2.5 Convergence Assessment for RJMCMC ………………………21
3. Simulation Studies ..................................24
3.1 Unbalanced data for unbalance tool usages ……………25
3.2 Sensitivity Analysis with Different Tolerance Controls for TCP and the Comparison with CART…………………………34
3.3 Robustness Studies by Balanced Simulation Data with Mean Shifts……38
4. Two Applications in the Semiconductor Industry ………43
4.1 Ramp Up Yield Using the TCP Method………………………43
4.2 Process Capability Indices Enhancement…………………49
5. Conclusion and Discussion……………………………………58
6. Future Works ……………………………………………………61
7. Appendix …………………………………………………………63
8. References……………………………………………………… 84
[1] Semiconductor Industry Association (2005), “SIA 2005 Annual Report,” San Jose: SIA .
[2] P. K. Chatterjee and R. R. Doering, “The future of microelectronics,” Proceedings of the IEEE, Vol. 86, No. 1, 1998, pp.176-183.
[3] P. J. Silverman, “Capital Productivity: Major Challenge for the Semiconductor Industry.” Solid State Technology, Vol. 37, No. 3, 1994, pp.140.
[4] F. Bergeret and Y. Chandon, “Improving yield in IC manufacturing by statistical analysis of large data base,” Micro, 1999, pp.59-75.
[5] W. H. Kruskal and W. A. Wallis, “Use of Ranks in One-Criterion Analysis of Variance,” Journal of the American Statistical Association, 47, 1952, pp.583-621.
[6] G. Kong, “Tool commonality analysis for yield enhancement,” in Proc. 2002 IEEE/SEMI Advanced Semiconductor Manufacturing Conf., 2002, pp.202-205.
[7] L. K. Garling and G. P. Woods, “Determining equipment performance using analysis of variance,” in Proc. 1990 Int. Semiconductor Manufacturing Science Symp., 1990, pp.85-89.
[8] T. McCray, J. McNames, and D. Abercrombie, “Locating disturbances in semiconductor manufacturing with stepwise regression,” IEEE Transactions on Semiconductor Manufacturing, Vol. 18, No. 3, 2005, pp.458-468.
[9] R. A. Fisher, Statistical Methods for Research Workers, 13th edition. Oliver and Boyd, Edinburgh. 1958
[10] J. W. Tukey, The Problem of Multiple Comparisons, 1953, Mimeographed monograph.
[11] M. Keuls, “The use of the ‘Studentized range’ in connection with an analysis of variance, “ Euphytica, 1. 1952, pp.112-122.
[12] D. B. Duncan, “Multiple Range and Multiple F Tests,” Biometrics, 11, 1955, pp.1-42.
[13] H. Scheffe, “A Method for Judging All Contrasts in the Analysis of Variance,” Biometrika, 40, 1953, pp.87-104.
[14] C.W. Dunnett, ”A multiple comparison procedure for comparing several treatments with a control,” Journal of the American Statistical Association, 50, 1955, pp.613-621.
[15] C.W. Dunnett, ”Robust multiple comparisons,” Commun. Statist., 11, 1982, pp.2611-2629.
[16] A. J. Scott and M. Knott, “A Cluster Analysis Method for Grouping Means in the Analysis of Variance,” Biometrics, 30, 1974, pp.507-512.
[17] K. J. Worsley, “A nonparametric extension of a cluster analysis method by Scott and Knott,” Biometrics, 33, 1977, pp.532-535.
[18] T. Calinski and L. C. A. Corsten, “Clustering Means in ANOVA by simultaneous testing,” Biometrics, 41, 1998, pp.39-48.
[19] I. T. Jolliffe, “Cluster Analysis as a Multiple Comparison Method.” In Proc. Conf. Appl. Statist. (ED. R.P. Gupta), Amsterdam: North Holland, 1975, pp.159-168.
[20] R. M. Gardner, J. Bieker, and S. Elwell, “Solving tough semiconductor manufacturing problems using data mining,” in Proc. IEEE/SEMI Advanced Semiconductor Manufacturing Conf. and Workshop, Boston, MA, Sep. 2000, pp.46-55.
[21] F. Mieno, T. Sato, Y. Shibuya, K. Odagiri, H. Tsuda, and R. Take, “Yield improvement using data mining system,” in Proc. IEEE Int. Symp. Semiconductor Manufacturing Conf., Santa Clara, CA, Oct. 1999, pp. 391-394.
[22] L. Breiman, J. Friedman, R., Olshen, and C. Stone, Classification and regression trees, Belmont, CA: Wadsworth, 1984.
[23] H. S. Stern, “Neural networks in applied statistics,” Technometrics, vol. 38, no. 3, 1996, pp.205-213.
[24] D.C. Montgomery, Design and analysis of experiments, 3rd edition. New York.
[25] A. Gelman, J. B. Carlin, H. S. Stern, and D. B. Rubin, Bayesian Data Analysis, 2nd edition. New York.
[26] P. J. Green, “Reversible jump Markov chain Monte Carlo computation and Bayesian model determination,” Biometrika, 82, 1995, pp.711-732.
[27] J. Maeritz and A. Schels, “Production enhancement of lithography through APC methods,” Future Fab, Vol.14, 2003.
[28] E. K. Lada, J. C. Lu and J. R. Wilson, “A Wavelet –Based Procedure for Process Fault Detection,” IEEE Transactions on Semiconductor Manufacturing, Vol. 15, No. 1, 2002, pp.79-90.
[29] S. T. Tseng, A. B. Yeh, F. Tsung, and Y. Y. Chan, “A study of variable EWMA controller,” IEEE Transactions on Semiconductor Manufacturing, Vol. 16, No. 4, 2003, pp.633-643.
[30] G. Consonni and P. Veronese, “A Bayesian method for combining results from several binomial experiments,” Journal of the American Statistical Association, 90, 1995, pp.935-944.
[31] S. Richardson and P. J. Green, “On Bayesian analysis of mixtures with an unknown number of components,” J. R. Statist. Soc. B, Vol. 59, No. 4, 1997, pp.731-792.
[32] A. Nobile and P. J. Green, “Bayesian analysis of factorial experiments by mixture modeling,” Biometrika, 87, 2003, pp.15-35.
[33] F. Bergeret and C. L. Gall, “Yield improvement using statistical analysis of process data,” IEEE Transactions on Semiconductor Manufacturing, Vol. 16, No. 3, 2003, pp.535-542.
[34] D. G. T. Denison, B. K. Mallick, and A. F. M. Smith, “A Bayesian CART Algorithm,” Biometrika, 85, 1998, pp.363-377.
[35] H. A. Chipman, E. I. George, and R. E. McCulloch, “Bayesian CART Model Search,” Journal of the American Statistical Association, Vol. 93, No. 443, 1998, pp.935-948.
[36] H. Zhang, Comment on “Bayesian CART Model Search,” Journal of the American Statistical Association, Vol. 93, No. 443, 1998, pp.948-950.
[37] C. C. Holmes, D. G. T. Denison, S. Ray, and B. K. Mallick, “Bayesian Prediction via Partitioning,” Journal of Computational and Graphical Statistics, Vol. 14, No. 4, 1998, pp.811-830.
[38] Y. Wu, H. Tjelmeland, and M. West, “Bayesian CART: Prior Specification and Posterior Simulation,” Journal of Computational and Graphical Statistics, Vol. 16, No. 1, 2007, pp.44-66.
[39] C. Siddhartha, and G. Edward, “Understanding the Metropolis-Hastings Algorithm,” The American Statistician, Vol. 49, 1995, pp.327-335.
[40] K. Knight, R. Kustra, and R. Tibshirani, Comment on “Bayesian CART Model Search,” Journal of the American Statistical Association, Vol. 93, No. 443, 1998, pp.950-954.
[41] W. R. Gilks, S. Richardson, and D. J. Spiegelhalter, “Markov chain Monte Carlo in practice,” in Interdisciplinary Statistics. London, U.K.: Chapman & Hall, 1996.
[42] G. Casella and E. I. George, “Explaining the Gibbs Sampler,” The American Statistician, Vol. 46, No. 3, 1998, pp.167-174.C. J. Kaufman, Rocky Mountain Research Lab., Boulder, CO, private communication, May 1995.
[43] A. Gelman, and D.B. Rubin, “Inference from Iterative Simulation Using Multipple Sequences,” Statistical science, Vol. 7, No. 4, 1992a, pp.457-511.
[44] S. P. Brooks, and A. Gelman, “General Methods for Monitoring Convergence of Iterative Simulations,” Journal of Computational and Graphical Statistics, Vol. 7, No. 4, 1998, pp.434-455.
[45] S. P. Brooks and P. Giudici, “Markov Chain Monte Carlo Convergence Assessment via Two-Way Analysis of Variance,” Journal of Computational and Graphical Statistics, Vol. 9, No. 2, 2000, pp.266-285
[46] L. A. Clark and D. Pregibon, “Tree based models,” In Statistical Models in S, eds. J. Chambers and T. Hastie, Belmont, CA: Wadsworth, 1992
[47] D. C. Montgomery, “Introduction to Statictical Quality Control,” 2nd edition , New York.
[48] H. Yosef and C. T. Ajit, “Multiple Comparison Procedures,” 2nd edition , New York.
[49] S. Gelman and D. Gelman, “Stochastic relaxation, Gibbs distributions and the Bayesian restoration of images,” IEEE Trans. Pattn. Anal. Mach. Intel., 6, 1984, pp.721-741.
[50] A. E. Gelfand and A. F. M. Smith, “Sampling-based approaches to calculating marginal densities,” Journal of the American Statistical Association, 85, 1990, pp.389-409.
[51] A. E. Gelfand, Hillls, Racine-Poon S. E. and A. F. M. Smith, “Illustration of Bayesian inference in normal data models using Gibbs sampling,” Journal of the American Statistical Association, Vol. 85, 1990, pp.972-985.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊