|
[1] Semiconductor Industry Association (2005), “SIA 2005 Annual Report,” San Jose: SIA . [2] P. K. Chatterjee and R. R. Doering, “The future of microelectronics,” Proceedings of the IEEE, Vol. 86, No. 1, 1998, pp.176-183. [3] P. J. Silverman, “Capital Productivity: Major Challenge for the Semiconductor Industry.” Solid State Technology, Vol. 37, No. 3, 1994, pp.140. [4] F. Bergeret and Y. Chandon, “Improving yield in IC manufacturing by statistical analysis of large data base,” Micro, 1999, pp.59-75. [5] W. H. Kruskal and W. A. Wallis, “Use of Ranks in One-Criterion Analysis of Variance,” Journal of the American Statistical Association, 47, 1952, pp.583-621. [6] G. Kong, “Tool commonality analysis for yield enhancement,” in Proc. 2002 IEEE/SEMI Advanced Semiconductor Manufacturing Conf., 2002, pp.202-205. [7] L. K. Garling and G. P. Woods, “Determining equipment performance using analysis of variance,” in Proc. 1990 Int. Semiconductor Manufacturing Science Symp., 1990, pp.85-89. [8] T. McCray, J. McNames, and D. Abercrombie, “Locating disturbances in semiconductor manufacturing with stepwise regression,” IEEE Transactions on Semiconductor Manufacturing, Vol. 18, No. 3, 2005, pp.458-468. [9] R. A. Fisher, Statistical Methods for Research Workers, 13th edition. Oliver and Boyd, Edinburgh. 1958 [10] J. W. Tukey, The Problem of Multiple Comparisons, 1953, Mimeographed monograph. [11] M. Keuls, “The use of the ‘Studentized range’ in connection with an analysis of variance, “ Euphytica, 1. 1952, pp.112-122. [12] D. B. Duncan, “Multiple Range and Multiple F Tests,” Biometrics, 11, 1955, pp.1-42. [13] H. Scheffe, “A Method for Judging All Contrasts in the Analysis of Variance,” Biometrika, 40, 1953, pp.87-104. [14] C.W. Dunnett, ”A multiple comparison procedure for comparing several treatments with a control,” Journal of the American Statistical Association, 50, 1955, pp.613-621. [15] C.W. Dunnett, ”Robust multiple comparisons,” Commun. Statist., 11, 1982, pp.2611-2629. [16] A. J. Scott and M. Knott, “A Cluster Analysis Method for Grouping Means in the Analysis of Variance,” Biometrics, 30, 1974, pp.507-512. [17] K. J. Worsley, “A nonparametric extension of a cluster analysis method by Scott and Knott,” Biometrics, 33, 1977, pp.532-535. [18] T. Calinski and L. C. A. Corsten, “Clustering Means in ANOVA by simultaneous testing,” Biometrics, 41, 1998, pp.39-48. [19] I. T. Jolliffe, “Cluster Analysis as a Multiple Comparison Method.” In Proc. Conf. Appl. Statist. (ED. R.P. Gupta), Amsterdam: North Holland, 1975, pp.159-168. [20] R. M. Gardner, J. Bieker, and S. Elwell, “Solving tough semiconductor manufacturing problems using data mining,” in Proc. IEEE/SEMI Advanced Semiconductor Manufacturing Conf. and Workshop, Boston, MA, Sep. 2000, pp.46-55. [21] F. Mieno, T. Sato, Y. Shibuya, K. Odagiri, H. Tsuda, and R. Take, “Yield improvement using data mining system,” in Proc. IEEE Int. Symp. Semiconductor Manufacturing Conf., Santa Clara, CA, Oct. 1999, pp. 391-394. [22] L. Breiman, J. Friedman, R., Olshen, and C. Stone, Classification and regression trees, Belmont, CA: Wadsworth, 1984. [23] H. S. Stern, “Neural networks in applied statistics,” Technometrics, vol. 38, no. 3, 1996, pp.205-213. [24] D.C. Montgomery, Design and analysis of experiments, 3rd edition. New York. [25] A. Gelman, J. B. Carlin, H. S. Stern, and D. B. Rubin, Bayesian Data Analysis, 2nd edition. New York. [26] P. J. Green, “Reversible jump Markov chain Monte Carlo computation and Bayesian model determination,” Biometrika, 82, 1995, pp.711-732. [27] J. Maeritz and A. Schels, “Production enhancement of lithography through APC methods,” Future Fab, Vol.14, 2003. [28] E. K. Lada, J. C. Lu and J. R. Wilson, “A Wavelet –Based Procedure for Process Fault Detection,” IEEE Transactions on Semiconductor Manufacturing, Vol. 15, No. 1, 2002, pp.79-90. [29] S. T. Tseng, A. B. Yeh, F. Tsung, and Y. Y. Chan, “A study of variable EWMA controller,” IEEE Transactions on Semiconductor Manufacturing, Vol. 16, No. 4, 2003, pp.633-643. [30] G. Consonni and P. Veronese, “A Bayesian method for combining results from several binomial experiments,” Journal of the American Statistical Association, 90, 1995, pp.935-944. [31] S. Richardson and P. J. Green, “On Bayesian analysis of mixtures with an unknown number of components,” J. R. Statist. Soc. B, Vol. 59, No. 4, 1997, pp.731-792. [32] A. Nobile and P. J. Green, “Bayesian analysis of factorial experiments by mixture modeling,” Biometrika, 87, 2003, pp.15-35. [33] F. Bergeret and C. L. Gall, “Yield improvement using statistical analysis of process data,” IEEE Transactions on Semiconductor Manufacturing, Vol. 16, No. 3, 2003, pp.535-542. [34] D. G. T. Denison, B. K. Mallick, and A. F. M. Smith, “A Bayesian CART Algorithm,” Biometrika, 85, 1998, pp.363-377. [35] H. A. Chipman, E. I. George, and R. E. McCulloch, “Bayesian CART Model Search,” Journal of the American Statistical Association, Vol. 93, No. 443, 1998, pp.935-948. [36] H. Zhang, Comment on “Bayesian CART Model Search,” Journal of the American Statistical Association, Vol. 93, No. 443, 1998, pp.948-950. [37] C. C. Holmes, D. G. T. Denison, S. Ray, and B. K. Mallick, “Bayesian Prediction via Partitioning,” Journal of Computational and Graphical Statistics, Vol. 14, No. 4, 1998, pp.811-830. [38] Y. Wu, H. Tjelmeland, and M. West, “Bayesian CART: Prior Specification and Posterior Simulation,” Journal of Computational and Graphical Statistics, Vol. 16, No. 1, 2007, pp.44-66. [39] C. Siddhartha, and G. Edward, “Understanding the Metropolis-Hastings Algorithm,” The American Statistician, Vol. 49, 1995, pp.327-335. [40] K. Knight, R. Kustra, and R. Tibshirani, Comment on “Bayesian CART Model Search,” Journal of the American Statistical Association, Vol. 93, No. 443, 1998, pp.950-954. [41] W. R. Gilks, S. Richardson, and D. J. Spiegelhalter, “Markov chain Monte Carlo in practice,” in Interdisciplinary Statistics. London, U.K.: Chapman & Hall, 1996. [42] G. Casella and E. I. George, “Explaining the Gibbs Sampler,” The American Statistician, Vol. 46, No. 3, 1998, pp.167-174.C. J. Kaufman, Rocky Mountain Research Lab., Boulder, CO, private communication, May 1995. [43] A. Gelman, and D.B. Rubin, “Inference from Iterative Simulation Using Multipple Sequences,” Statistical science, Vol. 7, No. 4, 1992a, pp.457-511. [44] S. P. Brooks, and A. Gelman, “General Methods for Monitoring Convergence of Iterative Simulations,” Journal of Computational and Graphical Statistics, Vol. 7, No. 4, 1998, pp.434-455. [45] S. P. Brooks and P. Giudici, “Markov Chain Monte Carlo Convergence Assessment via Two-Way Analysis of Variance,” Journal of Computational and Graphical Statistics, Vol. 9, No. 2, 2000, pp.266-285 [46] L. A. Clark and D. Pregibon, “Tree based models,” In Statistical Models in S, eds. J. Chambers and T. Hastie, Belmont, CA: Wadsworth, 1992 [47] D. C. Montgomery, “Introduction to Statictical Quality Control,” 2nd edition , New York. [48] H. Yosef and C. T. Ajit, “Multiple Comparison Procedures,” 2nd edition , New York. [49] S. Gelman and D. Gelman, “Stochastic relaxation, Gibbs distributions and the Bayesian restoration of images,” IEEE Trans. Pattn. Anal. Mach. Intel., 6, 1984, pp.721-741. [50] A. E. Gelfand and A. F. M. Smith, “Sampling-based approaches to calculating marginal densities,” Journal of the American Statistical Association, 85, 1990, pp.389-409. [51] A. E. Gelfand, Hillls, Racine-Poon S. E. and A. F. M. Smith, “Illustration of Bayesian inference in normal data models using Gibbs sampling,” Journal of the American Statistical Association, Vol. 85, 1990, pp.972-985.
|