跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.59) 您好!臺灣時間:2025/10/17 05:58
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:洪仁陽
研究生(外文):Horng, Ren-Yang
論文名稱:光觸媒氧化及不織布薄膜過濾複合系統:分解特性及過濾行為之探討
論文名稱(外文):Hybrid system of photocatalytic oxidation and non-woven membrane filtration:photodegradation characteristics and filtration behavior
指導教授:黃志彬黃志彬引用關係
指導教授(外文):Huang, Chih-Pin
學位類別:博士
校院名稱:國立交通大學
系所名稱:環境工程系所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:116
中文關鍵詞:光觸媒光觸媒薄膜複合系統不織布薄膜過膜壓力通量比通量
外文關鍵詞:PhotocatalysisPhotocatalytic Membrane ReactorNon-woven membraneTMPFluxSpecific Flux
相關次數:
  • 被引用被引用:1
  • 點閱點閱:527
  • 評分評分:
  • 下載下載:63
  • 收藏至我的研究室書目清單書目收藏:0
懸浮式光觸媒氧化系統具有提供大量有效表面積、簡化光源配置及無需固定光觸媒等優點,但如何有效且經濟地分離並回用光觸媒,仍是環保界亟待解決的重要課題。本研究從材料選擇、系統建立及驗證等方面著手,希望發展一種新穎性的光觸媒及薄膜複合系統。
本研究以不織布薄膜(或稱巨孔薄膜)取代一般使用微孔薄膜的光觸媒薄膜複合系統(photocatalytic membrane reactor, PMR),由其材質特性分析進而探討不織布薄膜之過濾行為。並就不同目標污染物如亞甲基藍、4-氯酚及二級放流水等進行污染物光分解特性研究及應用可行性驗證,以探討光觸媒及不織布薄膜複合系統建立之可能與效能。
首先,藉由不織布材質結構特性分析,並進行最佳不織布薄膜篩選的研究。採用0.2、2.0及20.0 µm等三種不同孔洞之不織布薄膜,並以比通量及濾液殘留濁度為指標。實驗發現,選用2.0 µm不織布薄膜,使其孔洞大小略等於或小於凝聚後光觸媒顆粒(或稱二級顆粒)(約2-8 µm)時,能有效地分離光觸媒,並同時可以符合上述兩項指標需求。
其次,由於不織布薄膜的過濾阻抗(filtration resistance)會受操作條件如光觸媒濃度、pH值、空氣強度及操作通量等影響,尤其操作通量達3 m3/m2/day或更高時,過濾阻抗更為明顯。由於不織布薄膜孔洞較大,且薄膜本身過濾阻抗極低,故其過濾阻抗以多孔性濾餅(cake formation)為主,約佔80%,而可逆及不可逆之孔洞阻塞(pore blocking)或孔洞縮小(pore narrowing)之過濾阻抗相對較低,分別各佔10%左右。本研究結果顯示,上述過濾阻抗經由適當操作條件控制,可維持多孔性濾餅之厚度,進而獲得較低的過膜壓力及穩定操作通量。
接著,使用亞甲基藍為目標污染物進行批次及連續實驗以探討光觸媒及不織布薄膜複合系統的建立。在批次實驗中,由於光分解目標污染物濃度低,可適用Langmuir -Hinshelwood反應動力之擬一階反應動力之描述。連續實驗中,槽中SS濃度隨操作流量(或通量)增加而降低,且濾液SS濃度低於偵測極限值,被攔截的光觸媒顆粒將在不織布薄膜表面形成多孔性濾餅。當過濾層形成後,配合適當操作條件,可獲得相當低過膜壓力(約3.5 kPa)及維持穩定操作通量。
最後,以4-氯酚及二級放流水為對象進行複合系統之應用研究,主要訴求為光觸媒鈍化及積垢物質之去除。在4-氯酚光分解過程中,發現氯離子生成並不會造成光觸媒鈍化或毒化現象,此與懸浮式光觸媒系統可以提供大量表面積及適當操作條件如pH值及溶氧有關。另外,複合系統可以有效去除二級放流水之積垢物質如生物高分子及腐植酸等,進而大幅改善UF薄膜過濾性,有助於提升本複合系統之應用潛力。
綜合上述討論,本研究提出之光觸媒氧化及不織布薄膜分離複合系統可有效分離懸浮光觸媒顆粒及分解污染物,配合最佳孔洞不織布薄膜選用及其表面形成多孔性濾餅之過濾方式,可以獲得低過膜壓力與穩定操作通量,進而避免積垢現象發生。
A suspended photocatalytic oxidation system offers lots of active sites for photocatalytic oxidation, simplifies UV light arrangement, and obviates the complexities of fixing a photocatalyst onto a substrate. However, effective and economic separation of photocatalyst from the slurry system is still a problem to be addressed. In this study, a novel photocatalytic membrane reactor (PMR) has been developed based on material selection, system development, and application study.
The non-woven membrane (or called macroporous membrane) instead of microporous membranes, e.g. MF or UF, was proposed in a PMR to separate photocatalysts from slurry and to photodegrade model compounds such as methylene blue, 4-chlorophenol, and secondary effluent. Three major parts including material characteristics of non-woven membrane and their filtration behavior, the development of the hybrid system from batch and continuous tests and the application studies of the hybrid system are emphasized in this study.
Three different pore sizes of non-woven membrane, 0.2, 2.0, and 20.0 µm, were applied to determine the most optimum filtration performance in terms of specific flux and residual turbidity in permeate. The results showed that when the pore size of the non-woven membrane was equal to or smaller than that of secondary particles of photocatalyst, a high specific flux and low turbidity in permeate were obtained simultaneously. Therefore, a 2.0 µm pore size of the non-woven membrane was selected for further study.
The filtration resistance in non-woven membrane was determined by the operating conditions, e.g. concentration of photocatalyst, pH value, air intensity and applied flux. The filtration resistance was more and more significant when applied flux was 3.0 m3/m2/day or more. Because the pore size of the non-woven membrane was large (i.e. 2.0 µm) and the filtration resistance from membrane itself was minor, the filtration resistance was dominated by porous cake formation, about 80%, and the rest of 20% was shared equally by reversible and irreversible pore blocking or pore narrowing. Under the circumstances, the thickness of porous cake formation was controlled by optimum operating conditions to obtain stable applied flux and low TMP.
The photodegradation characteristics of methlyene blue and filtration behavior using a 2.0 µm pore size of non-woven membrane were demonstrated in batch and continuous modes. The photodegradation of methlyene blue followed by pseudo-first-order reaction kinetics was proposed, because a low concentration of model compound was used. In continuous mode, the concentration of SS in hybrid system was decreased with increasing flow rate (or applied flux) resulting in the formation pf porous cake layer on the surface of non-woven membrane. Then, TMP was maintained around 3.5 kPa under optimum air intensity to induce a crossflow velocity after cake layer was formed.
The inactivation of photocatalyst and the photodegradation performance of organic fouling materials were focused on the application study of this hybrid system, when 4-cholophenol and secondary effluent were used, respectively. The inactivation or toxicity of photocatalyst was no obvious when the chloride ion was formed after photodegradation of 4-chlorophenol, because the tremendous active sites onto the surface of the suspended photocatalyst could offer and suitable operating conditions, e.g. pH value and dissolved oxygen, were performed. Moreover, organic fouling materials, e.g. biopolymer and humic acids, in the secondary effluent were photodegraded using this hybrid system to improve the filtration ability of UF membrane by a batch stirred cell test.
Therefore, the proposed hybrid system in which a non-woven membrane could replace microporous membrane in a PMR system was used to separate completely suspended photocatalysts and to photodegrade effectively model compounds. At the same time, low TMP and stable applied flux in this hybrid system was expected to reduce dramatically membrane fouling potential after the optimum pore size of non-woven membrane was selected and the porous cake layer was formed on the surface of non-woven membrane.
摘要 I
ABSTRACT III
誌謝 VI
目錄 VII
表目錄 X
圖目錄 XI
第一章 前言 1
1.1 研究緣起 1
1.2 研究目的 2
1.3研究範疇 3
第二章 文獻回顧 6
2.1光觸媒及薄膜複合系統 6
2.2微孔及不織布薄膜結構及過濾機制之比較 12
2.3 二氧化鈦懸浮液對光催化活性影響 16
第三章 方法與材料 19
3.1 實驗材料 19
3.1.1 藥品配製 19
3.1.2 不織布薄膜材料特性 19
3.1.3 光觸媒材料 21
3.2 實驗方法 24
3.2.1目標污染物分析 24
3.2.2不織布薄膜表面電性分析 26
3.2.3不織布薄膜孔洞大小篩選及操作條件建立 27
3.2.4 懸浮式光觸媒氧化批次實驗 31
3.2.5光觸媒及不織布薄膜複合系統之連續試驗評估 31
3.2.6過濾阻抗及比通量之決定 34
3.2.7 UF薄膜過濾性評估 35
第四章 不織布薄膜結構特徵及其過濾行為 37
4.1光觸媒顆粒表面界達電位與顆粒大小及PH值變化 37
4.2 不織布薄膜之材料結構 40
4.3 不織布薄膜孔洞篩選及操作條件決定 42
4.3.1 薄膜孔洞及顆粒粒徑之關係 42
4.3.2 影響不織布薄膜過濾阻抗之因素 43
4.4 不織布薄膜積垢特性分析 49
4.5 結語 50
第五章 光觸媒與不織布薄膜複合系統之建立 52
5.1 批次光分解效能及反應機制 52
5.2 連續式光觸媒及不織布薄膜複合系統之各項參數變化 57
5.2.1光源強度 57
5.2.2進流速率 57
5.2.3進流濃度 58
5.2.4光觸媒濃度 62
5.2.5操作通量及TMP 62
5.3結語 63
第六章 光觸媒氧化及不織布過濾複合系統應用研究 66
6.1 光觸媒氧化及不織布過濾複合系統分解4-氯酚各項參數變化 66
6.1.1 4-氯酚 66
6.1.2 TOC 67
6.1.3氯離子 67
6.1.4 濾液之殘留濁度 71
6.1.5 過膜壓力 71
6.2光觸媒氧化及不織布薄膜分離系統處理二級放流水之應用研究 74
6.2.1 光分解有機積垢物之影響因素 74
6.2.2連續式光觸媒及不織布薄膜複合系統處理二級放流水之影響因素 97
6.3 結語 102
第七章 結論與建議 103
7.1 結論 103
7.2 建議 104
參考文獻 105
VITA 112
[1]Fujishima, A, Honda K. "Electrochemical photolysis of water at a semiconductor electrode", Nature, 238, 37-38, 1972.

[2]Frank, S. N., Bard, A.J. "Heterogeneous photocatalytic oxidation of cyanide ion in aqueous solution at TiO2 powder", Journal of the American Chemical Society, 99, 303–304, 1977.

[3]Italo, M., Paola, P. "Photocatalytic oxidation of organic acids in aqueous media by a supported catalyst", Chemical Engineering Science, 54, 3107-3111, 1999.

[4]Tennakone, K., Tilakaratne, C.T.K., Kottegoda, I.R.M. "Photocatalytic degradation of organic contaminants in water with TiO2 supported on polythene films", Journal of Photochemistry and Photobiology A: Chemistry, 87, 177-179, 1995.
[5]Watts, R. J., Kong, S., Lee, W. "Sedimentation and reuse of titanium dioxide: application to suspended-photocatalyst reactors", Journal of Environmental Engineering ASCE, 739-735, 1995.
[6]Fernandez-Ibanez, P., Blabco, J., Malato, S., de las Nieves, F. J. "Application of the colloidal stability TiO2 particles for recovery and reuse in solar photocatalysis ", Water Research, 37, 3180-3188, 2003.
[7]Kagaya, S., Shimiu, K., Araf, R., Hasegawa, K. "Separation of titanium dioxide photocatalyst in its aqueous suspensions by coagulation with basic aluminum chloride", Water Research, 33, 1753 -1755, 1999.
[8]Gao, Y., Chen, B., Li, H., Ma, Y. "Preparation and characteristics of a magnetically separated photocatalyst and its catalytic properties", Materials Chemistry and Physics, 80, 384-355, 2003.
[9]Meng, Y., Huang, X., Yang, Q., Qian, Y., Kubota, N., Fukunaga, S. "Treatment of polluted river water with a photocatalytic slurry reactor using low-pressure mercury lamps coupled with a membrane", Desalination, 181, 121-133, 2005.
[10]Zhao, Y., Xing, W., Xu, N., Wong, F. S. "Effects of inorganic salt on ceramic membrane microfiltration of titanium dioxide suspension", Journal of Membrane Science, 254, 81-88, 2005.
[11]Lee, A. A., Choo, K. H., Lee, C. H., Lee, H. I., Hyeon, T., Choi, W., Kwon, H. H. "Use of ultrafiltration membranes for the separation of TiO2 photocatalysts in drinking water treatment", Industrial & Engineering Chemistry Research, 40, 1712-1719, 2001.

[12]Molinari, R., Grande, C., Drioli, E., Palmisano, L., Schiavello, M. "Photocatalytic membrane reactors for degradation of organic pollutants in water", Catalysis Today, 67, 273-279, 2001.
[13]Molinari, R., Pirillo, F., Loddo, V., Palmisano, L. "Heterogeneous photocatalytic degradation of pharmaceuticals in water by using polycrystalline TiO2 and a nanofiltration membrane reactor", Catalysis Today, 118, 205-213, 2006.
[14]Hirooyuki, K. "Photocatalytic water treatment system photo-cat. Lower running cost-based water treatment plant use of photocatalyst", Environmental Solution Technology, 4, 41-43, 2005.
[15]Molinari, R., Palmisano, L., Drioli, E., Schiavello, M. "Studies on various reactor configurations for coupling photocatalysis and membrane process in water purification", Journal of Membrane Science, 206, 399-415, 2002.
[16]Choo, K. H., Chang, D. I., Park, K. W., Kim, M. H. "Use of an integrated photocatalysis/hollow fiber microfiltration system for the removal of trichloroethylene in water", Journal of Hazardous Materials, 152, 183-190, 2008.
[17]Moria, S., Tomaszewska, M., Morawski, A. W. "Photocatalytic membrane reactor (PMR) coupling photocatalysis and membrane distillation-Effectiveness of removal of three azo dyes from water", Catalysis Today, 129, 3-8, 2007.
[18]Bosc, F., Ayral, A., Guizard, C. "Mesoporous anatase coatings for coupling membrane separation and photocatalyzed reactions", Journal of Membrane Science, 265, 13-19, 2005.
[19]Xi, W., Geissen, S.U. "Separation of titanium dioxide from photocatalytically treated water by cross-flow microfiltration", Water Research, 35, 1256-1262, 2001.
[20]Mozia, S., Tomaszewska, M., Morawski, A.W. "A new photocatalytic membrane reactor (PMR) for removal of azo-dye acid red 18 from water", Applied Catalysis B: Environmental, 59, 131-137, 2005.
[21]Doll, T. E., and Frimmel, F. H. "Cross-flow microfiltration with periodical back-washing for photocatalytic degradation of pharmaceutical and diagnostic residues- evaluation of the long term stability of the photocatalytic activity of TiO2", Water Research, 39, 847-854, 2005.
[22]Guzman, K. A., Finnegan, M. P., Banfield, J. F. "Influence of surface potential on aggregation and transport of titania nanoparticles", Environmental Science & Technology, 40, 7688-7693, 2006.
[23]Turbak, A. F. "Non-woven: Theory, Process, Performance, and Testing", Tappi Press, Atlanta Georgia,1993.
[24]Chang, L. S., Gander, M., Jefferson, B., Judd, S. J. "Low-cost membranes for use in a submerged MBR", Trans IChemE, 79, 183-188, 2001.
[25]Yoon, K., Kim, K., Wang, X., Fang, D., Hsiao, B. S., Chu, B. "High flux ultrafiltration membranes based on electrospun nanofibrous PAN scaffolds and chitosan coating", Polymer, 47, 2434-2441, 2006.
[26]Bélafi-Bakó, K., Koutinas, A., Nemestóthy, N., Gubicza, L., Webb, C. "Continuous enzymatic cellulose hydrolysis in a tubular membrane bioreactor", Enzyme and Microbial Technology, 38, 155-161, 2006.
[27]Roy, C., Auger, R., Chénier, R. "Use of non woven textile in intermittent filters", Water Science and Technology, 38, 159-166, 1998.
[28] Mendonça, M.B., Cammarota, M.C., Freire, D.D.C., Ehrlich, M. " A new procedure for treatment of oily slurry using geotextile filters", Journal of Hazardous Materials, 110, 113-118, 2004.
[29]Horng, R. Y., Shao, H., Chang, W.K., Chang, M.C. "The feasibility study of using non-woven MBR for reduction of hydrolyzed biosolids", Water Science and Technology, 54, 85-90, 2006.
[30]Chang, M. C., Horng, R.Y., Shao, H, Hu, Y. J. "Performance and filtration characteristics of on-woven membranes used in submerged membrane bioreactor for synthetic wastewater treatment", Desalination, 191, 8-15, 2006.
[31]Starov, V., Lloyd, D., Filippov, A., Glaser, S. "Sieve mechanism of microfiltration separation", Separation and Purification Technology, 26, 51-59, 2002.
[32]Destephen, J. A., Choi, K. "Modeling of filtration processes of fibrous filter media", Separations Technology, 6, 55-67, 1996.
[33]Lin, C. J., Rao, P., Shirazi, S. "Effects of operating parameters on permeate flux decline caused by cake formation-a model study", Desalination, 171, 95-105, 2004.
[34]Ripperger, S., Altmann, J. "Crossflow microfiltration-state of the art", Separation and Purification Technology, 26, 19-31, 2002.
[35]Polyakvo, Y. S. "Phenomenological theory of depth membrane filtration", Chemical Engineering Science, 62, 1851-1860, 2007.
[36]Sathish, M., Viswanath, R.P. "Photocatalytic generation of hydrogen over mesoporous CdS nanoparticle: effect of particle size, noble metal and support", Catalysis Today, 129, 421-427, 2007.
[37]Su, C., Hong, B. Y., Tseng, C. M. "Sol-gel preparation and photocatalysis of titanium dioxide", Catalysis Today, 96, 119-126, 2004.
[38]Zhang, Z., Wang, C. C., Zakaria, R., Ying, J. Y. "Role of particle size in nanocrystalline TiO2-based photocatalysts", Journal of Physical Chemistry B, 102, 10871-10878, 1998.
[39]Marira, A. J., Yeung, K. L., Lee, C. Y., Yue, P. L., Chan, C. K. "Size effects in gas-phase photo-oxidation of trichloroethylene using nanometer-sized TiO2 catalysts", Journal of Catalysis, 192, 185-196, 2000.
[40]Ito, S., Inoue, S., Kawada, H., Hara, M., Iwasaki, M., Tada, H. "Low-temperature synthesis of nanometer-sized crystalline TiO2 particles and their photoinduced decomposition of formic acid", Journal of Colloid and Interface Science, 216, 59-64, 1999.
[41]Porter, J. F., Li, Y. G., Chan, C. K. "The effect of cacination on the microstructure characteristics and photoreactivity of Degussa P 25 TiO2", Journal of Materials Science, 34, 1523-1531, 1999.
[42]Langlet, M., Permpoon, S., Riassetto, D., Berthome, G., Pernot, E., Joud, J. C. "Photocatalytic activity and photo-induced superhydrophilicity of sol-gel derived TiO2 films", Journal of Photochemistry and Photobiology A: Chemistry, 181, 203-214, 2006.
[43]Egerton, T. A., Tooley, I. R. "Effect of changes in TiO2 dispersion on its measured photocatalytic activity", Journal of Physical Chemistry, 108, 5066-5072, 2004.
[44]Pavlova-Verevkina, O. B., Shevchuk, Y.A., Nazarov, V. V. "Coagulation peculiarities and fractionation of nanodispersed titanium dioxide hydrosol", Colloid Journal, 65, 474-477, 2003.
[45]Choi, W., Termin, A., Hoffmann, M. R. "The role of metal ion dopants in quantum-sized TiO2: correlation between photoreactivity and charge carrier recombination dynamics", Journal of Physical Chemistry, 98, 13669-13679, 1994.
[46]Brezova, V., Blazkova, A., Karpinsky, L., Groskova, J., Havlinova, B., Jorik, V., Ceppan, M.J. "Phenol decomposition using Mn+/TiO2 photocatalysts supported by the sol-gel technique on glass fibres ", Journal of Photochemistry Photobiology A: Chemistry, 109, 177-183, 1997.
[47]Franch, M. I., Peral, J., Domenech, X., Howe, R. F., Ayllon, J.A. "Enhancement of photocatalytic activity of TiO2 by adsorbed aluminum (III)", Applied Catalysis B: Environmental, 55, 105-113, 2005.
[48]Tmokiewicz, M. "Scaling properties in photocatalysis", Catalysis Today, 58, 115-123, 2000.
[49]Serpone, N., Lawless, D. "Spectroscopic, photoconductivity, and photocatalytic studies of TiO2 colloids: naked and with the lattice doped with Cr3+, Fe3+, and V5+ cations", Langmuir, 10, 643-652, 1994.
[50]Navio, J. A., Testa, J. J., Djedjeian, P., Padron, J. R., Rodrigurez, D., Litter, M. I. "Iron-doped titania powders prepared by a sol-gel method. Part II: photocatalytic properties", Applied Catalysis A: General, 178, 191-203, 1999.
[51]Ranjit, K. T., Viswanathan, B. "synthesis, characterization and photocatalytic properties of iron-doped TiO2 catalysts", Journal of Photochemistry and Photobiology A: Chemistry, 108, 79-84, 1997.
[52]Nishikawa, H., Takara, Y. "Adsorption and photocatalytic decomposition of odor compounds containing sulfur using TiO2/SiO2 bead", Journal of Molecular Catalytic A: Chemical, 172, 247-251, 2001.
[53]Madani, M. E., Guillard, C., Perol, N., Chovelon, J. M., Azzouzi, M. E., Zrineh, A., Herrmann, J. M. "Photocatalytic degradation of diuron in aqueous solution in presence of two industrial titania catalysts either as suspended powders or deposited on flexible industrial photoresistant papers", Applied Catalysis B: Environmental, 65, 70-76, 2006.
[54]Sun, R.D., Nakajima, A., Watanabe, T., Hashimoto, K. "Decomposition of gas-phase octamethyltrisiloxane on TiO2 thin film photocatalysts-catalytic activity, deactivation, and regeneration", Journal of Photochemistry and Photobiology A: Chemistry, 154, 203-209, 2003.
[55]Wang, K. H., Hsieh, Y. H., Chou, M. Y., Chang, C. Y. "Photocatalytic degradation of 2-chloro and 2-nitrophenol by titanium dioxide suspensions in aqueous solution", Applied Catalysis B: Environmental, 21, 1-8, 1999.
[56]Zielinska, B., Grzechulska, J., Kalenczuk, R. J., Morawski, A. W. "The pH influence on photocatalytic decomposition of organic dyes over A11 and P 25 titanium dioxide", Applied Catalysis B: Environmental, 45, 293-300, 2003.
[57]Rincon, A-G., Pulgarin, C. "Effect of pH, inorganic ions, organic matter and H2O2 on E. coli. K12 photocatalytic inactivation by TiO2 implications in solar water disinfection", Applied Catalysis B: Environmental, 51, 283-302, 2004.
[58]Al-Rasheed, R., Cardin, D. J. "Photocatalytic degradation of humic acid in saline waters. Part 1. artificial seawater: influence of TiO2, temperature, pH, and air flow", Chemosphere, 51, 925-933, 2003.
[59]Dionysiou, D. D., Suidan, M., Bekou, E. "Effect of ionic strength and hydrogen peroxide on the photocatalytic degradation of 4-chlorobenzoic acid in water", Applied Catalysis B: Environmental, 26, 153-171, 2000
[60]Wang, K., Zhang, J., Lou, L., Yang, S., Chen, Y. "UV or visible light induced photodegradation of AO7 on TiO2 particles: the influence of inorganic anions", Journal of Photochemistry and Photobiology A: Chemistry, 165, 201-207, 2004.
[61]Piscopo, A., Robert, D., Weber, J. V. "Influence of pH and chloride anion on the photocatalytic degradation of organic compounds. Part I. effect on the benzamide and para-hydroxybenzoic acid in TiO2 aqueous solution", Applied Catalysis B: Environmental, 35, 117-124, 2001.
[62]Zheng, X., Mehrez, R., Jekel, M., Ernst, M. "Bio-filtration of treated domestic wastewater as a pretreatment to ultrafiltration: effect on protein and polysaccharide related fouling", the 4th IWA international membrane conference membranes for water and wastewater treatment, Harrogate, UK, 2007.
[63]Augustynski, J. "The role of the surface intermediates in the photoelectro-chemical behavior ofanatase and rutile TiO2", Electrochimca Acta, 38, 43-46, 1993.
[64]Linsebigler, A. L., Lu, G., Yates, J. T. Jr. "Photocatalysis on TiOn surfaces: principles, mechanisms, and selected results", Chemical Reviews, 95, 735-758, 1995.
[65]Rosenberger, S., Evenblij, H., Poele, S. T., Wintgens, T., Laabs, C. "The importance of liquid phase analyses to understand fouling in membrane assisted activated sludge process- six case studies of different European research groups", Journal of Membrane Science, 263, 113-126, 2005.
[66]Dubois, M., Gilles, K. A., Hamiton, J. K, Rebers, P.A., Smith, F. "Colorimetric method for determination of sugars and related substances", Analytical Chemistry, 28, 350-356, 1956.
[67]Lowry, O. H., Rosebrough, N. J., Farr, A. L., Randall, R. J. "Protein measurement with the folin phenol reagent", Journal of Biological Chemistry, 193, 265-275, 1951.
[68]Haberkamp, J., Ruhl, A. S., Ernst, M., Jekel, M. "Impact of coagulation and adsorption on DOC fractions of secondary effluent and resulting fouling behavior in ultrafiltration", Water Research, 41, 3794-3802, 2007.
[69]Everret, C. R., Chin, Y. P., Aiken, G. R. "High-pressure size exclusion chromatography analysis of dissolved organic matter isolated by tangential-flow ultrafiltration", Limnology and Oceanography, 44, 1316-1322, 1999.
[70]Hongve, D., Baann, J., Lomo, S. "Characterization of humic substances by means of high-perforamce size exclusion chromatography", Environment International, 22, 489-494, 1996.
[71]Muller, M. B., Frimmel, F. H. "A new concept for the fractionation of DOM as a basis for its combined chemical and biological characterization", Water Research, 36, 2643-2655, 2002.
[72]Chun, M. S., Cho, H. I., Song, I. K. "Electrokinetic behavior of membrane zeta potential during the filtration of colloidal suspensions", Desalination, 148, 363-367, 2002.
[73]Shim, Y., Lee, H. J., Lee, S., Moon, S. H., Cho, J. "Effects of natural organic matter and ionic species on membrane surface charge", Environmental Science & Technology, 36, 3864-3871, 2002.
[74]Pontie, M., Chasseray, X., Lemordant, D., Laine, J.M. "The streaming potential methods for the characterization of ultrafiltration organic membranes and the control of cleaning treatments", Journal of Membrane Science, 129, 125-133, 1997.
[75]Li, D., Fresy, M. W., Joo, Y. L. "Characterization of nanofibrous membranes with capillary flow porometry", Journal of Membrane Science, 286, 104-114, 2006.
[76]Al-Malack, M. H., Anderson, G. K. "Formation of dynamic membranes with crossflow microfiltration", Journal of Membrane Science, 112, 287-296, 1996.
[77]Sopajaree, K., Qasim, S. A., Basak, S., Rajeshwar, K. "An integrated flow reactor–membrane filtration system for heterogeneous photocatalytic. part II: experiments on the ultrafiltration unit and combined operation", Journal of Applied Electrochemistry, 29, 1111-1118, 1999.
[78]Chang, M.C., Horng, R.Y., Shao, H., Hu, Y. J. "Separation of titanium dioxide from photocatalytically treated water by non-woven membrane", Filtration, 6, 340-344, 2006.
[79]Hong, S., Krishna, P., Hobbs, C., Kim, D., Cho, J. "Variation in backwash efficiency during colloidal filtration of hollow-fiber microfiltration membranes", Desalination, 173, 257-268, 2005.
[80]Ueda, T., Hata, K., Kikuaka, T., Seino, O. "Effects of aeration on suction pressure in a submerged membrane bioreactor", Water Research, 31, 489-494, 1997.
[81]Wisniewaki, C., Grasmick, A., Cruz, A. L. "Critical particles size in membrane bioreactor case of a denitrifying bacterial suspension", Journal of Membrane Science, 197, 141-150, 2000.
[82]Iritani, E., Mukai, Y., Furuta, M., Kawakami, T., Katagiri, N. "Blocking resistance of membrane during cake filtration of dilute suspensions", AIChE Journal, 51, 2609-2614, 2005.
[83]Semiario, L., Rozas, R., Borquez, R., Toledo, P.G. "Pore blocking and permeability reduction in cross-flow microfiltration", Journal of Membrane Science, 209, 121-142, 2002.
[84]Chen, P. H., Jenq, C. H. "Kinetics of photocatalytic oxidation of trace organic compounds over titanium dioxide", Environment International, 24, 871-879, 1998.
[85]Bekbolet, M., Suphandag, A. S., Uyguner, C. S. " An investigation of the photocatalytic efficiencies of TiO2 powders on the decolourisation of humic acids", Journal of Photochemistry and Photobiology A: Chemistry, 148, 121-128, 2002.
[86]Marcinkowsky A. E., Kraus K. A., Phillips., Johnson J. S., Shor A.J. "Hyperfiltration studies IV salt rejection by dynamically formed hydrous oxide membranes", Journal of the American Chemical Society, 88, 5744-5746, 1996.
[87]Altman M., Semiat R., Hasson, D. "Removal of organic foulants from feed waters by dynamic membranes", Desalination, 125, 65-75, 2004.
[88]Cai, B., Ye, H., Yu, L. "Preparation and separation performance of a dynamically formed MnO2", Desalination, 128, 247-256, 2000.
[89]Diaonysiou, D. D., Khodadoust, A. P., Kern, A. M., Suidan, M. T., Baudin, I., Laine, J. M. "Continuous-mode photocatalytic degradation of chlorided phenols and pesticides in water using a bench-scale TiO2 rotating disk reactor", Applied Catalysis B: Environmental, 24, 139-155, 2000.
[90]Tseng, J. M., Huang, C. P. "Removal of chlorophenols from water by photocatalytic oxidation", Water Science and Technology, 23, 377-387, 1991.
[91]Moonsiri, M. Rangsunvigit, P., Chavadej, S., Gulari, E. "Effects of Pt and Ag on the photocatalytic degradation of 4-chlorophenol and its by-products", Chemical Engineering Journal, 97, 241-248, 2004.
[92]Alhakimi, G., Gebril, S., Studnicki, L. H. "Comparative photocatalytic degradation using natural and artificial UV-light of 4-chlorophenol as a representative compound in refinery wastewater", Journal of Photochemistry and Photobiology A: chemistry, 157, 103-109, 2003.
[93]Orantes, J., Wisniewski, C., Heran, M., Grasmick, A. "The influence of operating conditions on permeability changes in a submerged membrane bioreactor", Separation and Purification Technology, 52, 60-66, 2006.
[94]Choo, K. H., Chang, D. I., K.W. Park, K. W., Kim, M. H. "Use of an integrated photocatalysis/hollow fiber microfiltration system for the removal of trichloroethylene in water", Journal of Hazardous Materials, 152, 183-190, 2008.
[95]Horng, R. Y., Chang, M. C., Shao, H., Hu, Y. J., Huang, C. P., "The usage of non-woven fabric material as separation media in submerged membrane photocatalytic reactor for degradation of organic pollutants in water", Separation Science and Technology, 42, 1381-1390, 2007.
[96]Fu, J., Ji, M., Wang, Z., Jin, L., An, D. "A new submerged membrane photocatalytic reactor (SMPR) for fulvic acid removal using a nano-structured photocatalyst", Journal of Hazardous Materials, 131, 238-242, 2006.
[97]Wu, J. Y., Ye, H. F. "Characteristics and flocculating properties of an extracellar biopolymer produced from a Bacillus subtilis DYU1 isolate", Process Biochemistry, 42, 1114-1123, 2007.
[98]Li, Q., Xu, Z., Ingo, P. "Fouling of reverse osmosis membranes by biopolymers in wastewater secondary effluent: Role of membrane surface properties and initial permeate flux", Journal of Membrane Science, 290, 173-181, 2007.
[99]Nosaka, A. Y., Nishino, J., Fujiwara, T., Ikegami, T., Yagi, H., Akutsu, H., Nosaka, Y. "Effects of thermal treatment on the recovery of adsorbed water and photocatalytic activities of TiO2 photocatalytic systems", Journal of Physical Chemistry A, 110, 8380-8385, 2006.
[100]Huang, X., Leal, M., Li, Q. "Degradation of natural organic matter by TiO2 photocatalytic oxidation and its effect on fouling of low-pressure membranes", Water Research, 42, 1142-1150, 2008.
[101]Palmer, F. L., Eggins, B. R., Coleman, H. M. "The effect of operational parameters on the photocatalytic degradation of humic acid", Journal of Photochemistry and Photobiology A: Chemistry, 148, 137-143, 2002.
[102]Bekbolet, M., Balcioglu, I. "Photocatalytic degradation kinetics of humic acid in aqueous TiO2 dispersions: the influence of hydrogen peroxide and bicarbonate", Water Science and Technology, 34, 73-80,1996.
[103]Liao, C. H., Gurol, M. "Chemical oxidation by photolytic recomposition of hydrogen peroxide", Environmental Science & Technology, 29, 3007-3014, 1995.
[104]Abdessemd, D., Nezzal, G., Ben Aim, R. "Fraction of a secondary effluent with membrane separation", Desalination, 146, 433-437, 2002.
[105]Mietten-Peuchot M., Ben Aim, R., "Improvement of cross-flow microfiltration performance with flocculation", Proceedings 5th World Filtration Congress, Nice, 488-493, 1990.
[106]Wang, X., Wang, L., Liu, Y., Duan, W. "Ozonation pretreatment of ultrafiltration of the secondary effluent", Journal of Membrane Science, 287, 187-191, 2007.
[107]Horng, R. Y., Chang, M. C., Shao, H., Hu Y. J., Huang, C. P. "Application of TiO2 photocatalytic oxidation and non-woven membrane filtration hybrid system for degradation of 4-chorophenol", Desalination, 245, 169-182, 2009.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top