跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.213) 您好!臺灣時間:2025/11/13 02:50
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:羅時斌
研究生(外文):Shih-Bin Luo
論文名稱:不同SRT下溶解性微生物產物對生物除磷系統之影響
論文名稱(外文):Effects of soluble microbial products on biological phosphorus removal systems operated under different SRTs.
指導教授:張維欽張維欽引用關係
指導教授(外文):Wei-Chin Chang
學位類別:碩士
校院名稱:國立雲林科技大學
系所名稱:環境與安全工程系碩士班
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:134
中文關鍵詞:生物除磷系統溶解性微生物產物磷蓄積菌
外文關鍵詞:Soluble MIcrobial Productis
相關次數:
  • 被引用被引用:2
  • 點閱點閱:301
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
溶解性微生物產物(Soluble Microbial Products, SMPs)為廢水生物處理過程,因微生物代謝基質(Substrate Metabolism)或微生物自身衰減(Biomass Decay),所產生之溶解性有機物之總稱。其組成種類複雜且通常其生物分解性較進流基質為差。甚多研究文獻均顯示,廢水生物處理系統放流水中之溶解性有機物實際上大部分均為SMPs。SMPs具生物毒性、會抑制硝化作用、降低微生物之活性、限制其生長、影響活性污泥之動力特性、對於污泥之膠凝與沈降均具有負面之效應。雖已有研究針對SMPs對傳統除碳與硝化之生物處理之影響進行探討,截至目前卻未見SMPs同時對生物除磷系統操作性能與微生物族群影響之具體研究成果。
本研究嘗試建構兩座厭氧好氧活性污泥系統模場(亦即生物除磷系統模場),透過延長其中一座厭氧好氧活性污泥系統(即累積SMPs模場)之水力停留時間來累積系統中之SMPs,並以經由離心完全移除SMPs之另一座厭氧好氧活性污泥系統(即不累積SMPs模場)加以對照,藉以探討SMPs存在下對於生物除磷系統操作性能與系統內微生物族群變遷之影響;由於不同SRT操作下之厭氧好氧活性污泥系統產生之SMPs或有不同,本研究以SRT=5天與15天之條件重複進行前述之對照實驗,比較不同SRT控制下,SMPs對厭氧好氧活性污泥系統除磷功能影響之差異。
實驗結果顯示不論SRT為15天或5天,延長模廠水力停留時間皆可成功馴養出累積SMPs之污泥系統,且該SMPs之累積均造成系統除磷功能之喪失。批次實驗進一步證實SMPs存在於生物除磷系統中,並不影響PAOs之厭氧釋磷功能,但卻直接抑制PAOs在好氧段之攝磷能力,使PAOs胞內poly-P含量降低,因而造成PAOs在厭氧環境中喪失其對有機基質可競爭力,最終導致累積SMPs之厭好氧活性污泥系統除磷功能之喪失。此外,生物除磷系統中存在SMPs將導致生物除磷系統菌群結構之改變,其主要影響為降低PAOs族群比例、增加GAOs族群比例、增加SMPs分解菌比例等。另實驗顯示SRT 15天下所產生之SMPs對好氧攝磷之抑制強度較SRT 5天為高,且其Microtox毒性亦較高。
此外,過往研究亦顯示生物處理系統之環境程序壓力條件(如:溫度降低、有機負荷或水力負荷增加、或氮、磷缺乏等),會促使SMPs之增加。因此,本研究另以一連續操作之生物除磷系統模場進行進流階梯突變負荷實驗,透過以原進流負荷1.5倍、2倍與2.5倍之突增,及回復原進流負荷之突降,來增加微生物之環境程序壓力,探討進流階梯突變負荷對生物除磷系統操作性能之影響及SMPs在其中所扮演之角色。
實驗結果顯示在生物除磷系統遭受突變負荷時,SMPs在除磷效能之優劣上扮演著相當重要之角色。在突增負荷之初期,除磷效果之維持主要依賴系統內微生物之代謝調節作用,在進流突增負荷達2.5倍時,初期之除磷作用即遭受影響,須俟短期馴養使整體PAOs數量增加後方回復正常除磷功能。然在負荷突增後之持續馴養過程中,由於系統微生物量之增加,提高了SMPs濃度而導致除磷功能不穩定,但馴養後期則因SMPs之分解而又回復良好之除磷效果。另實驗顯示進流基質發生1.5倍、2倍與2.5倍突降,對於生物除磷系統之功能並不會產生顯著影響。
Soluble microbial products (SMPs) has been widely recognized to be produced by microorganisms in activated sludge during the removal of organic pollutants. SMPs contain a variety of organic matter, which were produced directly from substrate metabolism or biomass decay. Many past researches showed that the majority of the effluent soluble organics was actually SMPs. In addition, SMPs have been found to exhibit certain characteristics, such as toxicity and metal chelating properties, which affect metabolic activities of microorganisms both in treatment systems and in receiving waters. The presence of SMPs has also been shown to adversely affect the kinetic activity and the flocculating and settling properties of sludge. Past researches have already studied the influence of SMPs on microbial metabolisms related to carbon removal and nitrification, but at this moment, here has been no report on the inhibitory effect of SMPs on enhanced biological phosphorus removal (EBPR) and microorganism population.

In the present study, we tried to examine if SMPs have any effect on metabolisms related to EBPR operation on different SRT. We operated two anaerobic–aerobic activated sludge reactors, one with normal hydraulic retention time (HRT), and another with longer HRT to promote the accumulation of SMPs in its supernatant. Anaerobic–aerobic batch experiments were conducted by using the activated sludge from the normal HRT reactor in combination with the supernatant from either the normal HRT or longer HRT reactor. Then the rates for acetate uptake and phosphate release under anaerobic conditions and the rates for phosphate uptake under aerobic conditions were determined. Finally, the aim of this research was to investigate the effect of SMPs on enhanced biological phosphorus removal (EBPR) and microorganism population. Because the extent of SMP accumulation is reasonably expected to be heavily dependent on their characteristics and composition, which would significantly vary with operating conditions such as SRT. This research repeated the same experiment operation at SRT of 5 and 15 day for examining the effect on biological phosphorus removal system of each SRT.

The experimental results found that no matter which SRT the biological phosphorus removal system was operated, lengthening HRT can successfully accumulate SMPs and reduce treatment efficiency of biological phosphorus removal system. Anaerobic–aerobic batch experiments further confirmed that SMPs could inhibit PAOs metabolism, change biomass structure and reduce phosphate removal. Besides, SMPs inhibit PAOs phosphate up take under aerobic condition, but not effect their anaerobic phosphate release. This resulted in gradual reduction of PAOs group, and finally lead to the lost of phosphorus removal function. Additionally, SMPs present in biological phosphorus removal system accounted for change of microorganism population, the major effect is decreasing the population of PAOs, increasing the population of GAOs and SMPs removed organisms. Additionally, the experiment results found that inhibition intensity of aerobic phosphate uptake and Mirotox toxicity of SMP gradually increased as SRT was lengthened.

Besides, past research has been shown that SMPs are produced in response to environmental stress, such as extreme temperature changes, increase of organic loading or hydrodynamic loading and nutrient deficiency. This research therefore operated another biological phosphorus removal system to investigate the characteristics of SMPs and effect of sudden substrate concentration changes on biological phosphorus removal system.

The experimental results showed that SMPs play an important role on phosphorus removal ability when biological phosphorus removal system is subject to sudden substrate concentration changes. At the initial stage of sudden substrate concentration increase, the phosphorus removal ability depends on the microorganism metabolism to keep satisfactory operation ability. When substrate loading increase to 2.5, the phosphorus removal ability gets worse but the phosphorus removal ability recovered in a short time by making PAOs population increase. But, in the adaption process after substrate concentration sudden increase, SMPs concentration increased because of biomass increase. This make phosphorus removal ability gets worse. In the later adaption stage good phosphorus removal ability was obtained because the SMPs were degraded. Finally the experimental result showed that sudden substrate concentration decrease did not exert any apparent influence on the biological phosphorus removal system.
中文摘要 ……………………………………………………………………........ I
英文摘要 ………………………………………………………………………… III
致 謝 ………………………………………………………………………… V
目 錄 ……………………………………………………………………........ VII
表 目 錄 ……………………………………………………………………........ X
圖 目 錄 ……………………………………………………………………........ XI
1.Amy G. L., Bryant Jr. C. W. and Belyani M., 1987a, “Molecular weight distributions of soluble organic matter in various secondary and tertiary effluents.” Water Sci.Technol. 19, 529-538.
2.Amy G. L., Collins M. R., Kuo C. J. and King P. H., 1987b, “Comparing gel permeation and ultrafiltration for the molecular weight characterization of aquatic organic matter.” J. AWWA., 79(1), 43-49.
3.Aquino, S. F. and Stuckey, D. C., 2004, “The effect of organic and hydraulic shock loads on the production of soluble microbial products in anaerobic digesters.” Water Environ Res. 76, 2628–2636.
4.Aquino, S. F. and Stuckey, D. C., 2003, “The production of soluble microbial products in anaerobic chemostats under nutrient deficiency.” ASCE J Environ Eng. 129(11), 1007–14.
5.Aquino, S. F., Stuckey, D. C., 2004, “Soluble microbial products formation in anaerobic chemostats in the presence of toxic compounds. “ Water Res. 38, 255-266.
6.Artan N. and Orhon D. The effect of reactor hydraulics on the performance of activated sludge systems II., 1989, “The formation of microbial products.” Water Res. 23(12), 1519-1525.
7.Barker D. J., Mannucchi G. A., Salvi S. M. L. and Stuckey D. C., 1999., “Characterisation of soluble residual chemical oxygen demand (COD) in anaerobic wastewatertreatment effluents.” Water Res. 33(11), 2499-2510
8.Barker, D. J., Stuckey, D. C., 1999, “A review of soluble microbial products (SMP) in wastewater treatment systems.” Water Res. 33(14), 3063–3082.
9.Baskir C. I. and Hansford G. S., 1980, “Product formation in the continuous culture of microbial populations grown on carbohydrates.” Biotech. Bioeng. XXII, 1857-1875.
10.Brand H, Gross RA, Lenz RW, Fuller RC., 1988, "Pseudomonas oleovorans as a Source of Poly (β-Hydroxyalkanoates) for Potential Applications as Biodegradable Polyesters." App Environ Microbiol; 54:1977-1982.
11.Bisogni, J. J. and Lawrence, A. W., 1971, “Relationships between biological solids retention time and settling characteristics of activated sludge.” Water Res. 5, 753-763.
12.Boero, V. J., Eckenfelder, Jr. W. W. and Bowers A. R., 1991, “Soluble microbial product formation in biological systems.” Water Sci. Technol. 23, 1067-1076.
13.Boero V. J., Eckenfelder Jr. W. W. and Bowers A. R., 1996, “Molecular weight distribution of soluble microbial products in biological systems. “ Water Sci. Technol. 34(5-6), 241-248.
14.Brdjanovic, D., van Loosdrecht, M. C. M., Hooijmans, C. M., Mion, T., Alaerts, G. J. and Jeijnen, J. J., 1998c, “Bioassay for glycogen determination in biological phosphorus removal systems.”Wat. Sci. Tech.37(4-5),541-547.
15.Bunch R. L., Barth E. F. and Ettinger M. B., 1961, “Organic materials in secondary effluents.” J. WPCF. 33(2), 122-126.
16.Cech, J. S. and Hartman, P., 1990, “Glucose induced break-down of enhanced biological phosphate removal.”Environ. Tech.11, 651-656.
17.Chalor Jarusutthirak, Gary Amy, 2007, “Understanding soluble microbial products (SMP) as a component of effluent organic matter (EfOM)”, Water Res. 41 2787 – 2793.
18.Chudoba J., 1985, “Inhibitory effect of refractory organic compounds produced by activated sludge micro-organ-isms on microbial activity and flocculation.” Water Res. 19(2), 197-200.
19.Chudoba J., 1985, “Quantitative estimation in COD units of refractory organic compounds produced by activated sludge microorganisms.” Water Res. 19(1), 37-43.
20.Chudoba J., 1967, “Residual organic matter in activated sludge process effluents. I. Degradation of saccharides, fatty acids and amino acids under batch conditions.” Scientific Papers of the Institute of Chemical Technology (Czech). Technol. Water F12, 39-75.
21.Chudoba J., 1985a, “Inhibitory effect of refractory organic compounds produced by activated sludge micro-organisms on microbial activity and flocculation.” Water Res. 19(2), 197-200.
22.Chudoba J., Nemec M. and Nemcova B., 1968a, “Residual organic matter in activated sludge process effluents. II. Degradation of saccharides, fatty acids and amino acids under continuous conditions.” Scientific Papers of the Institute of Chemical Technology (Czech). Technol.Water F13, 27-43.
23.Chudoba J., Prasil M. and Emmerova H., 1968b, “Residual organic matter in activated sludge process effluents. III. Degradation of amino acids and phenols under continuous conditions.” Scientific Papers of the Institute of Chemical Technology (Czech). Technol.Water F13, 45-61.
24.Comeau, Y., Hall, K. J., Hancock, R. E. W. and Oldham, W. K., 1986, “Biochemical model enhanced biological phosphorus removal.”Wat. Res. 20(12),1511-1521.
25.Comeau Y, Hall KJ, Oldham WK., 1988, "Determination of Poly-β-hydroxybutyrate and Poly-β-hydroxyvalerate in Activated Sludge by Gas-Liquid Chromatography." Appl Environ Microbiol; 54: 2325-2327.
26.Duncan J. Barker M, Gianni A. Mannucchi, Sandrine M. L. Salvi and David C. Stuckey, 1999, Wat. Res. Vol. 33, No. 11, pp. 2499-2510.
27.de Silva DGV, Rittmann, B. E., 2000, “Interpreting the response to loading changes in a mixed-culture completely stirred tank reactor.” Water Environ Res. 72(5), 566–73.
28.Eckenfelder, Jr. W. W. and Musterman, J. L., 1995, “Activated sludge treatment of industrial wastewater.” Technomic Publishing Company, Inc..
29.Filipe, C.D.M and Daigger, G.T., 1998, ”Development of a revised metabolic model for the growth of phosphorus-accumulating organisms,” Water Env. Res. 70, 67-79.
30.Filipe, C.D.M., Daigger, G.T., Grady, C.P.L., 2001, Biotechnol. Bio Bioeng.76, 17–31.
31.Gaudy Jr. A. F. and Blachly T. R., 1985, “A study of the biodegradability of residual COD.” J. WPCF 57(4), 332-338.
32.Grady Jr. C. P. L., Kirsch E. J., Koczwara M. K.,Trgovcich B. and Watt R. D., 1984, “Molecular weight distributions in activated sludge effluents.” Water Res. 18(2), 239-246.
33.Hejzlar J. and Chudoba J., 1986, “Microbial polymers in the aquatic environment: I. Production by activated sludge microorganisms under different conditions.” Water Res. 20(10), 1209-1216.
34.Ichihashi, O., Satoh, H., Mino, T., 2006, “Effect of soluble microbial products on microbial metabolisms related to nutrient removal.” Water Res. 40, 1627-1633.
35.Jarusutthirak C. and Amy G., 2007, “Understanding soluble microbial products (SMP) as a component of effluent organic matter (EfOM)”, Water Res. 41, 2787–2793.
36.Kuo W. C. and Parkin G. F., 1996, “Characterization of soluble microbial products from anaerobic treatment by molecular weight distribution and nickel-chelating properties.” Water Res. 30(4), 915-922.
37.Kuo W. C., Sneve M. A. and Parkin G. F., 1993, “Formation of soluble microbial products during anaerobic treatment.” Water Environ. Res. 68, 279-285.
38.Laspidou, C. S., Rittmann, B. E., 2002, “A unified theory for extracellular polymeric substances, soluble microbial products, and active and inert biomass.” Water Res. 36, 2711-2720.
39.Liu WT, Mino T, Nkamura K, Matsuo T., 1994, "Role of glycogen in acetate uptake and polyhydroxyalkanoate synthesis in an anaerobic- aerobic activated sludge with minimized polyphosphate content." Ferment Bioeng; 77:535-40.
40.Louie, T.M., Mah, T.J., Oldham, W. and Ramey, W.D., 2000, “Use of metabolic inhibitors and gas chromatography / mass spectrometry to study poly-β-hydroxyalkanoates metabolism involving cryptic nutrients in enhanced biological phosphorus removal systems.”Wat. Res. 34(5), 1507- 1514.
41.Magbanua, B. S. and Bowers A. R., 2006, “Characterization of soluble Microbial Products (SMP) Derived From Glucose and Phenol in Dual Substrate Activated Sludge Bioreactors.” Biotech. Bioeng., 93(5), 862-870.
42.Maurer, M., Gujer, W., Hany, R. and Bachman, S., 1997, “Intracellular carbon flow in phosphorus accumulating organisms from activated sludge systems.” Wat. Res. 31(4) 907-917.
43.Majone M, Dircks K, Beun JJ., 1999, Aerobic storge under dynamic conditions in activated sludge processes. The state of the art. Water Sci Technol 39 (1):61-73.
44.Jens Meinhold, Eva Arnold and Steven ISAACS., 1999, “EFFECT OF NITRITE ON ANOXIC PHOSPHATE UPTAKEIN BIOLOGICAL PHOSPHORUS REMOVAL ACTIVATED SLUDGE”, Wat. Res. Vol. 33, No. 8, pp. 1871-1883.
45.Mino, T., Tsuzuki, Y. and Matsuo, T., 1987, “Effect of phosphorus accumulation on acetate metabolism in the biological phosphorus removal process. Proc.IAWPRC Int. Conf. on Biological Phosphate Removal from Wastewaters.”Rome, Adv. Water Pollut. Cont., ed., R.Ramadori, 27-38. Pergamon Press.
46.Mino, T., van Loosdrecht, M. C. M. and Hejjnen, J. J., 1998, “Microbiology and biochemistry of the enhanced biological phosphate removal process. Wat. Res. 32(11), 3193-3207.
47.Takashi Mino, Osamu Ichihashi, Hiroyasu Satoh, 2006, “Effect of soluble microbial products on microbial metabolisms related to nutrient removal” WAT. RES., 40, 1627 – 1633.
48.Nachaiyasit, S. and Stuckey, D. C., 1997, “Effect of low temperatures on the performance of an anaerobic baffled reactor (ABR).” J. Chem. Tech. Biotech. 69, 276-284.
49.Namkung E. and Rittmann B. E., 1986, “Soluble microbial products (SMP) formation kinetics by biofilms.” Water Res. 20(6), 795-806.
50.Namkung E. and Rittmann B. E., 1988, “Effects of SMP on biofilm-reactor performance.” J. Environ. Eng. Div.ASCE. 114(1), 199-210.
51.Noguera D. R., Araki N. and Rittmann B. E., 1994, “Soluble microbial products (SMP) in anaerobic chemostats.” Biotech. Bioeng. 44, 1040-1047.
52.Parkin G. F. and McCarty P. L., 1975, “Characteristics and removal of soluble organic nitrogen in treated effluents.” Water Tech. 7(3-4), 435-445.
53.Parkin G. F. and McCarty P. L., 1981a, “A comparison of the characteristics of soluble nitrogen in untreated and activated sludge treated wastewaters.” Water Res. 15,139-149.
54.Parkin G. F. and McCarty P. L., 1981b, “Production of soluble organic nitrogen during activated sludge treatment.” J. WPCF 53(1), 99-112.
55.Parkin G. F. and McCarty P. L., 1981c, “Sources of soluble organic nitrogen in activated sludge effluents.” J.WPCF 53(1), 89-98.
56.Pereira, H., Lemos, P. C., Reis, M. A. M., Crespo, J. P. S. G., Carrondo, M. J. T. and Santos, H., 1996, “Model for carbon metabolism in biological phosphorus removal process based on in vivo C13-NMR labeling experiments.”Wat. Res., 30(9), 2128-2138.
57.Pribyl M., Tucek F., Wilderer P. A. and Wanner J., 1997, “Amount and nature of soluble refractory organics produced by activated sludge micro-organisms in sequencing batch and continuous flow reactors.” Water Sci. Technol. 35(1), 27-34.
58.Rappaport S. M., Richard, M. G., Hollstein, M. C. and Talcott, R. E., 1979, “Mutagenic activity in organic wastewater concentrates.” Environ. Sci. Technol., 13, 957–961.
59.Schiener, P., Nachaiyasit, S. and Stuckey, D. C., 1998, “Production of soluble microbial products (SMP) in an anaerobic baffled reactor: composition, biodegradability and the effect of process parameters.” Environ. Technol., 19, 391-400.
60.Schuler, A. J. and Jenkins, D., 2002, “Effects of pH on enhanced biological phosphorus removal metabolisms.”Wat. Sci. Tech. 46(4–5), 171–178.
61.Smolders, G. L. F., van, d. J., van Loosdrecht, M. C. M. and Heijnen J. J., 1994, “Model of the anaerobic metabolism of the biological phosphorus removal process: stoichiometry and H influence.”Biotechnol. Bioeng.43,461-470.
62.Shuang Liang, Cui Liu, Lianfa Song, 2007, “Soluble microbial products in membrane bioreactor operation: Behaviors, characteristics, and fouling potential.” Water Res., 41, 95 – 101
63.Sollfrank, U., Kappeler, J. and Gujer, W., 1992, “Temperature effects on wastewater characterization and the release of soluble inert organic material.” Water Sci. Technol. 25(6), 33-41.
64.Van, L M. C. M. and Heijnen, J. J., 1997, “Importance of bacterial storage polymers in bioprocesses.”Water Sci. Tech. 35(1), 41-47.
65.Zilles, J.L., Peccia, J., Noguera, D.R., 2002, Water Environ. Res. 74,428–436.
66.黃雅琪.(2003)低磷負荷厭氧選種系統pH、溫度效應與菌群結構之研究,碩士論文,國立雲林科技大學環境與安全工程研究所。
67.蘇峻輝(2006)不同P/C負荷下厭氧好氧活性污泥系統之污泥代謝行為,碩士論文,國立雲林科技大學環境與安全工程研究所。
68.陳建衡(2006)溶解性微生物產對生物除磷系統之影響,碩士論文,國立雲林科技大學環境與安全工程研究所。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊