跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.110) 您好!臺灣時間:2025/09/28 13:17
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:洪芷庭
研究生(外文):Chih-ting Hung
論文名稱:多層電子密度泛函理論的開發,含氙與氮多重鍵結分子的理論研究與過氧化氯之光譜的理論預測
論文名稱(外文):Development of Multi-Coefficient DFT, Theoretical Study of Molecules Containing Xe-N multiple bonds, and Theoretical Prediction of the ClOOCl Spectra
指導教授:胡維平
指導教授(外文):Wei-ping Hu
學位類別:碩士
校院名稱:國立中正大學
系所名稱:化學所
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:186
中文關鍵詞:鈍氣分子多層電子結構方法光譜吸收位置
外文關鍵詞:M06-2XB2K-PLYPB2T-PLYPXeNspectraMC-DFTClOOCl
相關次數:
  • 被引用被引用:0
  • 點閱點閱:412
  • 評分評分:
  • 下載下載:18
  • 收藏至我的研究室書目清單書目收藏:0
本篇論文分為四個部份,在第一章中,我們將MC-DFT方法應用在近年來發展出的DFT方法,包含M05、M05-2X、M06、M06-2X和double-hybrid density functionals,並測試它們在熱化學動力學(thermochemical kinetics) 能量上的表現。測試結果顯示,發現在大部分的情形下,使用多個基底函數組合可比單一個基底函數準確度改善不少,在達到同樣的準確度下,計算資源也可以大幅減少。我們建議使用MC-DFT方法做計算時,可搭配pdz/MG3S、pdz/ptz/apdz和pc1/pc2/apc1,在準確度和效率上都有不錯的表現。
在第二章中,我們延續第一章,將表現較好的M06-2X、B2K-PLYP 和B2T-PLYP等方法進行更多基底函數組合的測試。測試結果顯示,在211個熱化學動力學能量上,M06-2X準確度改善不多,而B2K-PLYP和B2T-PLYP使用pdz/apdz/6-311+G(3df,2pd)和pc1/apc1/6-311+G(3df,2pd)等基底函數組合可比pdz/ptz/apdz約再下降0.2 kcal/mol。我們進一步利用熱化學動力學能量來最佳化B2K-PLYP和B2T-PLYP的exact exchange energy以及E2 correlation energy的比例,得到一個新的MC-B2-PLYP方法。最佳化結果顯示,大部分的基底函數組合平均絕對誤差可再下降0.1 kcal /mol,其中以pc1/apc1/6-311+G(3df,2pd)的1.29 kcal /mol為最準確的結果。
在第三章中,我們利用ab initio和DFT方法來研究含XeN多重鍵結的分子。計算結果顯示,XeNO2-、XeNOF、XeF2NO-、XeNO2F、XeNO2Li和XeF2NOLi等具有Xe-N非常短的鍵長,約為1.80 Å。我們也計算這六個分子分解成較穩定的小分子,其能障分別至少有41.8、19.6、27.8、27.1、29.7和36.2 kcal/mol。因此我們認為這類型的鈍氣分子,可能在適當低溫條件下穩定存在。
在第四章中,我們利用EOM-CCSD和TD-B3LYP來研究ClOOCl的UV-Vis光譜。計算結果顯示,此兩方法的UV-Vis Spectra分別約在225和245 nm有最大的吸收,在長波長的位置有較弱的吸收,與實驗值趨勢一致。計算結果也顯示,ClOOCl二面角的轉動對318 nm附近的吸收度會有明顯的增強;單一ClO鍵拉長會對吸收位置造成明顯的紅移,可能為造成實驗上較長波長吸收的原因。我們也利用ab initio、DFT和多層電子結構方法來研究Cl2O2 isomers的相對能量和反應能障。計算結果顯示,Cl2O2 isomers間的穩定度由大至小為ClClOO>ClClO2>ClOOCl>ClOClO。我們在反應能障的部份,皆高於林明璋院士等人利用G2M方法的計算結果,我們認為基底函數的收斂問題是造成誤差的主要原因,且ClOOCl要轉換為其它isomers是不容易進行的。
In chapter one, We have tested several recently developed density functional methods, including M05, M05-2X, M06, M06-2X and double-hybrid density functionals, using the multi-coefficient density functional theory (MC-DFT) approach for the performance on thermochemical kinetics. The results indicated that in most cases, the accuracy can be significantly improved by using more than one basis set, and the same level of accuracy can be reached using less expensive basis set combinations. The three combinations pdz/MG3S, pdz/ptz/apdz, and pc1/pc2/apc1 are especially attractive in this regard.
In chapter two, we continued the first chapter, we tested the good methods, including M06-2X, B2K-PLYP and B2T-PLYP methods, using the MC-DFT with more basis set combinations. The tested results showed that the performance of a set of 211 thermochemical kinetics data by the M06-2X method can not be significantly improved, but B2K-PLYP and B2T-PLYP can be reduced 0.2 kcal/mol form using the pdz/ptz/apdz basis set combination to using the pdz/apdz/6-311+G(3df,2pd) and pc1/apc1/6-311+G(3df,2pd) basis set combinations.We further used the thermochemical kinetics data to optimize the ratios of exact exchange energy and the E2 correlation energy on the B2K-PLYP and B2T-PLYP methods, in able to obtain a new MC-B2-PLYP method. The optimized results showed that the mean unsigned errors (MUEs) of the most of the basis set combinations can be reduced 0.1 kcal/mol, and the best result can be using the pc1/apc1/6-311+G(3df,2pd) basis set combinations with 1.29 kcal/mol.
In chapter three, we used ab initio and the DFT methods to study the molecules containing XeN multiple bonds. The computed results showed that the Xe-N bond lengths of XeNO2-, XeNOF, XeF2NO-, XeNO2F, XeNO2Li and XeF2NOLi can be very short, there are approximately 1.80 Å. We also calculated the six molecules decomposed to the stable and small molecules, the energy barriers of them have 41.8, 19.6, 27.8, 27.1, 29.7 and 36.2 kcal/mol, respectively. Therefore we think this type of noble-gas (Ng) molecules can be stably existed under the suitable and low temperature conditions.
In chapter four, we used EOM-CCSD and TD-B3LYP methods to study the UV-Vis spectra of ClOOCl. The computed results showed that the UV-Vis Spectra of the two methods had approximately the biggest absorption in 225 and 245 nm, respectively. They had the weak absorption at the position of long wave lengths, the results were consistent with the tendency of the experiments. The computed results also showed that the rotation of dihedral angles of ClOOCl had the obvious enhancement at approximately 318 nm; The elongation of the bond of ClO will create the obvious red shift of the absorbing position, possibly to create at the experiment the long wave length absorption reason. We also used ab initio, DFT and the multi-coefficient electronic structure methods to study the relative energies and the barriers of Cl2O2 isomers. The computed results showed that the stability of Cl2O2 isomers were ClClOO> ClClO2>ClOOCl>ClOClO. The energy barriers of Cl2O2 isomers were all higher than the results of Ming-Chang Lin et al, we thought the reason of the difference results were the convergence of basis sets.
中文摘要……………………………………………………………… i
英文摘要……………………………………………………………iii

第一章 The MC-DFT Approach to the M05, M05-2X, M06, M06-2X, and the Double-Hybrid Density Functionals
摘要……………………………………………………………………1
1.1前言……………………………………………………………… 2
1.2計算方法………………………………………………………… 7
1.3結果與討論……………………………………………………… 9
1.4結論……………………………………………………………… 27
1.5 參考文獻………………………………………………………… 29
附錄……………………………………………………………… 33

第二章 The Adjustment of MC-DFT Approach to the M06-2X, B2K-PLYP and B2T-PLYP Methods
摘要…………………………………………………………………… 59
2.1 前言……………………………………………………………… 60
2.2 計算方法………………………………………………………… 61
2.3 結果與討論……………………………………………………… 65
2.4 結論……………………………………………………………… 78
2.5 參考文獻………………………………………………………… 79
附錄……………………………………………………………… 81

第三章Theoretical Study on the Xe-N triple bond
摘要…………………………………………………………………… 83
3.1 前言……………………………………………………………… 84
3.2 計算方法………………………………………………………… 85
3.3 結果與討論……………………………………………………… 88
3.4 結論………………………………………………………………123
3.5 參考文獻…………………………………………………………124

第四章 Theoretical Study of UV-Vis Spectra and Potential Energy Surface on the ClOOCl
摘要………………………………………………………………… 127
4.1 前言………………………………………………………………128
4.2 計算方法…………………………………………………………131
4.3 結果與討論………………………………………………………132 4.4 結論………………………………………………………………175
4.5 參考文獻…………………………………………………………176
1.Hohenberg, P.; Kohn, W. Phys. Rev. 1964, 136, B864?B871.

2.Kohn, W.; Sham, L. J. Phys. Rev. 1965, 140, A1133?A1138.

3.Laird, B. B.; Ross, R. B.; Ziegler, T. in Chemical Application of Density-Functional Theory; Laird, B. B.; Ross, R. B.; Ziegler, T., Eds.; ACS Symposium Series 629, American Chemical Society, Washington, DC, 1996; pp. 1-11.

4.Scuseria, G. E.; Staroverov,V. N. in Theory and Applications of Computational Chemistry: The First Forty Years, Dykstra, C. E., Frenking, G.; Kim, K. S.; Scuseria, G. E., Eds.; Elsevier B.V., 2005; pp. 669-724.

5.Slater, J. C. Quantum Theory of Molecular and Solids. Vol. 4: TheSelf-Consistent Field for Molecular and Solids; McGraw-Hill: New York,1974.

6.Becke, A. D. J. Chem. Phys. 1996, 104, 1040?1046.

7.Tao, J.; Perdew, J. P.; Staroverov, V. N.; Scuseria, G. E. Phys. Rev. Lett. 2003, 91, 146401.

8.Perdew, J. P.; Schmidt, K. In Density Functional Theory and Its
Applications to Materials; Doren, V., Alsenoy, C. V., Geerlings.,P.,Eds.;American Institute of Physics: New York, 2001.

9.Stephens, P. J.; Devlin, F. J.; Chabalowski, C. F.; Frisch, M. J. J. Phys. Chem. 1994, 98, 11623.

10.Boese, A. D.; Martin, J. M. L. J. Chem. Phys. 2004, 121, 3405.

11.Zhao,Y.; Schultz, N. E.; Truhlar, D. G. J. Chem. Phys. 2005, 123, 161103.

12.Zhao, Y.; Truhlar, D. G. J. Chem. Phys 2006, 125, 194101.

13.Zhao, Y.; Truhlar, D. G. Theor. Chem. Acc. 2008, 120, 215?541.

14.Grimme, S. J. Chem. Phys. 2006, 124, 034108.

15.Schwabe, T. Grimme, S. Phys. Chem. Chem. Phys. 2006, 8, 4398?4401.

16.Tarnopolsky, A.; Kartom, A.; Sertchook, R.; Vuzman, D. Martin, J. M. L. J. Phys. Chem. A 2008, 112, 3.

17.Pople, J. A.; Head-Gordon, M.; Fox, D. J.; Raghavachari, K.; Curtiss, L. A. J. Chem. Phys. 1989, 90, 5622.

18.Curtiss, L. A.; Jones, C.; Trucks, G. W.; Raghavachari, K.; Pople, J. A. J. Chem. Phys. 1990, 93, 2537.

19.Curtiss, L. A.; Raghavachari, K.; Trucks, G. W.; Pople, J. A. J. Chem. Phys. 1991, 94, 7221.

20.Curtiss, L. A.; Raghavachari, K.; Redfern, P. C.; Rassolov, V.; Pople, J. A.; J. Chem Phys. 1998, 109, 7764.

21.Curtiss, L. A.; Redfern, P. C.; Raghavachari, K. J. Chem Phys. 2007, 126, 084108.

22.Ochterski, J. W.; Petersson, G. A.; and Montgomery Jr., J. A. J. Chem. Phys. 1996, 104, 2598.

23.Curtiss, L. A.; Redfern, P. C.; Raghavachari, K.; Pople, J. A. J. Chem. Phys. 2001, 114, 108.

24.Martin, J. M. L.; Oliveira G. J. Chem. Phys. 1999, 111, 1843.

25.Parthiban S.; Martin, J. M. L. J. Chem. Phys. 2001, 114, 6014.

26.Boese, A. D.; Oren, M.; Atasoylu, O.; Martin, J. M. L.; Kállar, M.; Gauss J. J. Chem. Phys. 2004, 120, 4129.

27.Karton A., Rabinovich, E.; Martin, J. M. L. J. Chem. Phys. 2006, 125, 144108.

28.Fast, P. L.; Sanchez, M. L.; Truhlar, D. G. Chem. Phys. Lett. 1999, 306, 407.

29.Lynch, B. J.; Truhlar, D. G. J. Phys. Chem. A 2003, 107, 3898.


30.Curtiss, L. A.; Raghavachari, K.; Redfern, P. C.; Pople, J. A. J.Chem. Phys. 2000, 112, 1125.

31.Lee, T.-H.; Chen, H.-R.; Hu, W.-P. Chem. Phys. Lett. 2005, 412, 430

32.Zhao, Y.; Lynch, B. J.; Truhlar, D. G. Phys. Chem. Chem. Phys. 2005, 7, 43?45.

33.Sun, Y.-L.; Lee, T.-H.; Chen, J.-L.; Wu, K.-J.; Hu, W.-P. Chem. Phys. Lett. 2007, 442, 220?223.

34.Chen, J.-L.; Sun, Y.-L.; Wu, K.-J.; Hu, W.-P. J. Phys. Chem. A 2008, 112, 1064?1070.

35.Fast, P. L.; Corchado, J.; Sanchez, M. L.; Truhlar, D. G. J. Phys. Chem. A 1999, 103, 3139.

36.Zhao, Y.; Lynch, B. J.; Truhlar, D. G. J. Phys. Chem. A 2004, 108, 2715.

37.Zhao, Y.; Truhlar, D. G. J. Phys. Chem. A 2004, 108, 6908.

38.Perdew, J. P. In Electronic Structure of Solids ’91; Ziesche, P., Eschig, H., Eds.; Akademie Verlag: Berlin, 1991; p 11

39.Zhao, Y.; Schultz, N. E.; . Truhlar, D. G. J. Chem. Theory Comput. 2006, 2, 364.

40.Lynch, B. J.; Zhao, Y.; Truhlar, D. G. J. Phys. Chem. A 2003, 107, 1384.

41.Curtiss, L. A.; Redfern, P. C.; Raghavachari, K.; Rassolov, V.; Pople, J. A. J. Chem. Phys. 1999, 110, 4703.

42.(a) Jensen, F. J. Chem. Phys. 2001, 115, 9113?9125. (b) Jensen, F. J. Chem. Phys. 2002, 116, 7372?7379. (c) Jensen, F. J. Chem. Phys. 2002, 117, 9234?9240.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top