跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.176) 您好!臺灣時間:2025/09/09 20:48
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林旻冠
研究生(外文):Min Guan Lin
論文名稱:Bacillus licheniformis ATCC14580分子伴護蛋白DnaK及核苷酸交換因子GrpE之重要殘基
論文名稱(外文):Critical residues of the molecular chaperone DnaK and the nucleotide exchange factor GrpE from Bacillus licheniformis ATCC 14580
指導教授:周微茂林榮流林榮流引用關係
指導教授(外文):Wei Mou ChouLong Liu Lin
學位類別:碩士
校院名稱:國立嘉義大學
系所名稱:生化科技學系研究所
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
中文關鍵詞:地衣芽孢桿菌分子伴護蛋白
外文關鍵詞:Bacillus licheniformismolecular chaperone
相關次數:
  • 被引用被引用:0
  • 點閱點閱:394
  • 評分評分:
  • 下載下載:37
  • 收藏至我的研究室書目清單書目收藏:1
許多分子伴護蛋白皆為熱休克蛋白 (Hsp) ,且在保護細胞對抗環境中許多逆境扮演著重要的角色。DnaK系統被大家所知其功能在於幫助新合成蛋白摺疊及避免細胞內蛋白質聚集,且具有兩個輔助性分子伴護蛋白DanJ與GrpE,能夠提高DnaK之活性。
在本研究中,分為兩個部分探討Bacillus licheniformis ATCC 14580熱休克蛋白70 (BlDnaK)系統中,成員DnaK與GrpE之特定殘基對其結構與活性之影響:
PCR的過程中, 我們得到了在第52及134號密碼子雙點突變之BlGrpE突變株。BlGrpE之殘基Leu52與Leu134分別以脯胺酸和組胺酸取代,為兩突變株BlGrpE-L52P與BlGrpE-L134H。BlGrpE野生型與BlGrpE-L52P皆能促進BlDnaK三磷酸腺苷水解活性。然而BlGrpE-L134H與雙點突變之BlGrpE-L52P/L134H並不具有輔助性分子伴護蛋白之能力。BlGrpE野生型、BlGrpE-L52P、BlGrpE-L134H能與BlDnaK單體進行交互作用,但BlGrpE-L52P/L134H未發現具有專一性交互作用。測量螢光光譜發現BlGrpE突變株之芳香族胺基酸殘基所處之微環境發生了重大的變化。與BlGrpE野生型相比,BlGrpE突變株蛋白之圓二色光譜於波長208 nm與222 nm之訊號減少,且對於溫度所引起之變性作用更加敏感。
為了進一步探討BlGrpE第134個胺基酸殘基所扮演的角色,因此進行飽和選位突變。利用鎳金屬螯合層析管柱純化BlGrpE野生型及其突變株蛋白質,且其分子量約為34.5 kDa。BlGrpE野生型進行核苷酸交換因子之活性比較時,可以發現其突變株L134H、L134K、L134R、L134D、L134E、L134N、L134Q、L134S、L134G與L134P之活性減少超過96 %。在試管中進行BlDnaK與BlGrpE之結合分析實驗,顯示BlGrpE野生型與具有功能之突變株皆能與BlDnaK單體進行交互作用,而剩下的突變株則無法與BlDnaK單體進行交互作用。BlGrpE野生型與其他九個具有功能性之突變株可增加刺激BlDnaK之三磷酸腺苷水解活性,而其他缺陷之突變株則否。依據圓二色光譜之比對分析後,發現不具活性之突變株螺旋含量明顯少於野生型。此外,不具活性之突變株對於溫度所引起之變性作用更為敏感。綜合上述結果,說明BlGrpE殘基Leu134可能在結構上扮演著重要的角色。
DnaK在三磷酸腺苷水解反應過程中,需特定胺基酸殘基維持DnaK之三磷酸腺苷鍵結區中ADP-Mg-Pi複合物處於一正確構型。透過序列同質性,我們模擬出BlDnaK 之三維結構,並選出五個可能與維持此構型有關之胺基酸殘基。與BlDnaK野生型相較之下,選位突變之蛋白質D8A、N13D、E145A、D168A與T173A,其分子伴護蛋白活性劇烈地下降。補償性實驗中顯示突變蛋白質完全喪失復活大腸桿菌 (Escherichia coli) dnaK756-ts熱敏感生長缺失突變株之生長能力。BlDnaK野生型能夠幫助變性之螢火蟲螢光酵素再折疊,然而突變株蛋白質此能力則是大幅度下降。同時加入BlDnaJ、BlGrpE及NR-胜肽,D8A、N13D、E145A、D168A與T173A之三磷酸腺苷水解活性並無協同刺激。除D8A外,野生型與其餘突變株蛋白質皆有幾乎相同之圓二色光譜,且對溫度誘導變性具有相似之敏感性。這些結果暗示選擇之殘基對BlDnaK之功能性非常重要。

Many molecular chaperones are heat-shock proteins (Hsp) and play an important role in the protection of the host cell against various stresses. DnaK system is a known for assisting protein folding and avoiding intracellular protein aggregation, it has two co-chaperones DnaJ and GrpE, they could accelerate the DnaK activity.
In this study two researches are conducted to invesigate the effect of specific residues of DnaK and GrpE for structural and chaperone activity in Bacillus licheniformis ATCC 14580 heat shock protein 70 (BlDnaK) system.
A DNA fragment encoding BlGrpE with double mutations at codons 52 and 134 was obtained during PCR cloning. Leu52 and Leu134 in BlGrpE were individually replaced with Pro and His to generate BlGrpE-L52P and BlGrpE-L134H. BlGrpE and BlGrpE-L52P synergistically stimulated the ATPase activity of BlDnaK. However, BlGrpE-L134H and the double-mutated protein (BlGrpE-L52P/L134H) had no co-chaperone function. BlGrpE, BlGrpE-L52P, and BlGrpE-L134H mainly interacted with the monomer of BlDnaK but non-specific interaction was observed for BlGrpE-L52P/L134H. Measurement of intrinsic fluorescence revealed a significant alteration of the microenvironment of aromatic acid residues in the mutant proteins. As compared with BlGrpE, quenching of 208 nm and 222 nm signals were observed in the mutant BlGrpEs and the single-mutated proteins were more sensitive to thermal denaturation.
To further elucidate the role of leucine 134 of BlGrpE, site-saturation mutagenesis was employed to generate all possible replacements for this residue. Wild-type and mutant proteins were purified by nickel-chelated chromatography and had a molecular mass of approximately 34.5 kDa. As compared with wild-type BlGrpE, the nucleotide exchange factor (NEF) activity of L134H, L134K, L134R, L134D, L134E, L134N, L134Q, L134S, L134G and L134P was reduced by more than 96%. In vitro binding assay revealed that wild-type BlGrpE and the functional variants mainly interacted with the monomer of BlDnaK, but no such interaction was observed for the remaining mutant proteins. BlGrpE and 9 mutant proteins synergistically stimulated the ATPase activity of BlDnaK, whereas the NEF-defective variants had no synergistic stimulation. Comparative analysis of the far-UV CD spectra showed that the a-helical content of the inactive mutant BlGrpEs was reduced significantly with respect to wild-type protein. Moreover, the inactive mutant proteins also exhibited a more sensitivity towards the temperature-induced denaturation. Taken together, these results indicate that Leu134 might play a structural role for the proper function of BlGrpE.
DnaK needs specific residues maintaining ADP-Mg2+-Pi complex at the ATP-binding cleft of protein in ATP hydrolysis. Based on the sequence homology, we have modeled the three-dimensional structure of BlDnaK, and selected five different amino acids that might be responsible for the complex. As compared with wild-type BlDnaK, site-directed mutant proteins D8A, N13D, E145A, D168A, and T173A had a dramatic reduction in their chaperone activities. Complementation test revealed that the mutant proteins lost completely the ability to rescue the temperature-sensitive growth defect of Escherichia coli dnaK756-ts. Wild-type BlDnak assisted the refolding of denatured firefly luciferase, whereas a significant decrease in this ability was observed for the mutant proteins. Simultaneous addition of BlDnaJ, BlGrpE, and NR-peptide, did not synergistically stimulate the ATPase activity of D8A, E145A, D168A and T173A. Circular dichroism spectra were nearly identical for wild-type and mutant proteins, and they, except D8A, also exhibited a similar sensitivity towards temperature-induced denaturation. These results suggest that the selected residues are critical for the proper function of BlDnaK.

英文摘要 1
中文摘要 4
前言
一、細胞逆境反應 7
二、熱休克蛋白 9
三、熱休克蛋白70 13
四、熱休克蛋白40 23
五、核苷酸交換因子 GrpE 26
六、原核生物中熱休克蛋白70之機制 29
七、螢光光譜及圓二色光譜 33
八、Bacillus licheniformis ATCC14580 38
九、目前所要進行之研究 41
材料與方法
一、藥品 45
二、菌株質體及培養基 45
三、方法 47
I. BlGrpE實驗方法與步驟
1. 質體 47
2. 重組DNA技術 47
3. 選位突變 54
4. 少量抽取BlGrpE質體及轉型至大腸桿菌M15 58
5. BlGrpE 之表現及純化 60
6. 蛋白質電泳分析與活性染色 63
7. 酵素之生化特性分析 68
8. 核苷酸釋放量 70
9. BlGrpE 之光譜結構特性分析 72
II. BlDnaK實驗方法與步驟
1. 質體 73
2. 選位突變 74
3. 少量抽取BlDnaK質體及轉型至大腸桿菌M15 74
4. BlDnaK 之表現及純化 75
5. 蛋白質電泳分析與活性染色 78
6. 酵素之生化特性分析 80
7. BlDnaK動力學之分析 85
8. 螢光酵素復性分析 91
9. BlDnaK野生型及其突變株之光譜結構特性分析 91

結果
一、 Bacillus licheniformins之核苷酸交換因子GrpE其殘基Leu52與Leu134對其整體結構而言相當重要 93
1. 序列比對與蛋白質純化 93
2. 純化之BlGrpEs其輔助性分子伴護蛋白活性與DnaK鍵
結之能力分析 96
3. 光譜特性 99
二、B. licheniformis核苷酸交換因子GrpE其殘基Leucine134飽
和選位突變之探討顯示此殘基對輔助性蛋白活性之重要性 104
1. BlGrpE與EcGrpE之序列比對 104
2. 選位飽和突變及其重組蛋白質之純化 106
3. BlGrpE野生型與其突變株之功能性分析 107
4. BlGrpE野生型及其突變株與DnaK鍵結活性分析 107
5. 純化之BlGrpE野生型及其突變株之輔助性分子伴護蛋
白活性 107
6. 結構分析 110
三、B. licheniformis DnaK突變株之分子伴護蛋白能力 114
1. BlDnaK之序列比對與同源模擬 114
2. 野生型及其突變株之特性分析 117
3. 大腸桿菌熱敏感突變株補償性分析 119
4. GdnHCl變性之螢火蟲螢光酵素之復性實驗分析 123
5. 輔助性分子伴護蛋白及胜肽對BlDnaK野生型與突變株之三磷酸腺苷水解活性影響 124
6. BlDnaK野生型與突變株之圓二色光譜探討 126
討論
一、 Bacillus licheniformins之核苷酸交換因子GrpE其殘基
Leu52與Leu134對其整體結構而言相當重要 131
二、 B. licheniformis核苷酸交換因GrpE其殘基Leucine134飽
和選位突變之探討顯示此殘基對輔助性蛋白活性之重要
性 137
三、 B. licheniformis DnaK突變株之分子伴護蛋白能力 142
參考文獻 149
附錄一 168
附錄二 169
附錄三 171
附錄四 172
附錄五 173
附錄六 174

Alves V.S., Pimenta D.C., Sattlegger E., Castilho B.A. (2004) Biophysical characterization of Gir2, a highly acidic protein of Saccharomyces cerevisiae with anomalous electrophoretic behavior. Biochem. Biophys. Res. Commun. 314, 229-234.
Armstrong Z., Reitinger S., Kantner T., Withers S.G. (2010) Enzymatic thioxyloside synthesis: characterization of thioglycoligase variants identified from a site-saturation mutagenesis library of Bacillus circulans xylanase. Chembiochem. 11(4), 533-538.
Arrigo, A. (1998) Small proteins: chaperones that act as regulators of intracellular redox state and programmed cell death. Biol.Chem. 379, 19-26.
Beckman R.P., Mizzen L.A., Welch W.J. (1990) Interaction of Hsp70 with newly synthesized proteins: implications for protein folding and assembly. Science 248, 850–854.
Benaroudj N., Batelier G., Triniolles F., Ladjimi M.M. (1995) Self-association of the molecular chaperone HSC70. Biochemistry 34, 15282–15290.
Birrer, G.A., Cromwick, A.M., and Gross, R.A. (1994) Poly(glutamic acid) formation of Bacillus licheniformis 9945a: physiological and biochemical studies. International Journal of Biological Macromolecules 16, 265-275.
Blatch, G.L., and Lässle, M. (1999) The tetratricopeptide repeat: a structural motif mediating protein-protein interactions. BioEssays. 21, 932-939
Bricker, A., Scheufler, C., von der Mülbe, F., Fleckenstein, B., Herrmann, C., Jung, G., Moarefi, I., and Hartl, F. (2002) Ligand Discrimination By TPR Domains . J.Biol Chem. 277(22), 19265-19275
Bork, P., Sander, C., and Valencia, A. (1992) An ATPase domain common to prokaryotic cell cycle proteins, sugar kinases, actin, and hsp70 heat shock proteins. Prc. Natl. Acad. Sci. USA . 89 ,7290-7294
Boshoff, A., Hennessy, F., and Blatch, G.L. (2004) The in vivo and in vitro characterization of DnaK from Agrobacterium tumefaciens RUOR. Protein Expression and Purification 38, 161-169.
Boshoff, A., Stephens, L.L., and Blatch, G.L. (2008) The Agrobacterium tumefaciens DnaK: ATPase cycle, oligomeric state and chaperone properties. The International Journal of Biochemistry & Cell Biology 40, 804-812.
Bradford, M.M. (1976) A rapid and sensitive method for quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72, 248-254.
Brehmer D., Rudiger S., Gassler C.S., Klostermeier D., Packschies L., Reinstein J., Mayer M.P., Bukau B. (2001) Tuning of chaperone activity of Hsp70 proteins by modulation of nucleotide exchange. Nat. Struct. Biol. 8, 427-432.
Brychzy, A., Rein, T., Winklhofer, K. F., Hartl, F. U., Young, J. C. and Obermann, W. M. (2003) Cofactor Tpr2 combines two TPR domains and a J domain to regulate the Hsp70/Hsp90 chaperone system. EMBO J. 22, 3613–3623.
Buchberger A., Gässler C.S., Büttner M., McMacken R., Bukau B. (1999) Functional defects of the DnaK756 mutant chaperone of Escherichia coli indicate distinct roles for amino and carboxyl terminal residues in substrate and co-chaperone interaction and interdomain communication. J. Biol. Chem. 274,38017-38026.
Buchberger A., Valencia A., McMacken R., Sander C., Bukau B. (1994) The chaperone function of DnaK requires the coupling of ATPase activity with substrate binding through residue E171. EMBO J. 13, 1687–1695.
Bukau, B., and Horwich A. L. (1998) The Hsp70 and Hsp60 chaperone machines. Cell 92, 351-366.
Bukau, B., and Walker, G.C. (1989) Delta dnak52 mutants of Escherichia coli have defects in chromosome segregation and plasmid maintenance at normal growth temperatures. Journal of Bacteriology 171, 6030-6038.
Bukau, B., Weissman, J., and Horwich, A. (2006) Molecular chaperone and protein quality control. Cell 125, 443-451
Cellier M.F., Teyssier J., Nicolas M., Liautard J.P., Marti J., Sri Widada J. (1992) Cloning and characterization of the Brucella ovis heat shock protein DnaK functionally expressed in Escherichia coli. J. Bacteriol. 174, 8036–8042.
Chang Yi-Wei, Sun Yuh-Ju, Wang Chung, and Hsiao Chwan-Deng. (2008) Crystal structure of the 70-kDa heat shock protein in domain disjoining conformation. J. Biol. Chem. 283, 15502-15511.
Cheetham, M. E., and Caplan, A. J. (1998) Structure, function and evolution of DnaJ: conservation and adaptation of chaperone function. Cell Stress & Chaperones. 3 (1), 28-36.
Chesnokova L.S., Slepenkov S.V., Protasevich H., Schorn M.G., Brouillette C.G., Witt S.N. (2003) Deletion of DnaK’s lid strengthens binding to the nucleotide exchange factor, GrpE: a kinetic and thermodynamic analysis. Biochemistry 42, 9028–9040.
Chen C.C., Cho Y.C., Lai C.C., Hsu W.H. (2009) Purification and characterization of a new Rhizopuspepsin from Rhizopus oryzae NBRC 4749. J. Agric. Food. Chem. 57(15), 6742-6747
Crabb, W.D., and Shetty, J.K. (1999) Commodity scale production of sugars from starches. Current Opinion in Microbiology 2, 252-256.
Eftink (1991) Fluorescence techniques for study in protein structure. In Methods of Biochemical Analysis, Wiley, New York, 127-205
Eveleigh DE (1981) The microbial production of industrial chemicals. Scientific American 245, 155-178.
Flaherty, K.M., DeLuca-Flaherty, C.,and Mckay, D. B (1990) Three-dimensional structure of the ATPase fragment of a 70K heat-shock cognate prtein. Nature 346, 623-628.
Flaherty K.M., Wilbanks S.M., DeLuca-Flaherty C., McKay D.B. (1994) Structural basis of the 70-kilodalton heat shock cognate protein ATP hydrolytic activity. II. Structure of the active site with ADP or ATP bound to wild type and mutant ATPase fragment. J. Biol. Chem. 269, 12899–12907.
Flynn G.C., Chappell T.G., Rothman J.E. (1989) Peptide binding and release by proteins implicated as catalysts of protein assembly. Science 245, 385–390.
Freeman, B. C., Myers, M.P., Schumacher, R., and Morimoto, R.I. (1995) Identification of a regulatory motif in Hsp7 that affects ATPase activity, substrate binding and interaction with HDJ-1. EMBO. 14, 2281-2292.
Garcia-Ortega L., de Los Rios V., Martínez-Ruiz A., Onaderra M., Lacadena J., Martinez del Pozo A., Gavilanes J.G. (2005) Anomalous electrophoretic behavior of a very acidic protein: ribonuclease U2. Electrophoresis 26, 3407-3413.
Gelinas A.D., Langsetmo L., Toth J., Bethoney K.A., Stafford W.F., Harrison C.J. (2002) A structure-based interpretation of E.coli GrpE thermodynamic properties. J. Mol. Biol. 323, 131-142.
Genevaux, P., Georgopoulos, C., and Kelly, W.L. (2007) The Hsp70 chaperone machines of Escherichia coli: a paradigm for the repartition of chaperone functions. Molecular Microbiology 66, 840-857.
Gething M.J., Sambrook J. (1992) Protein folding in the cell. Nature 355, 33–45.
Gupta, R., Beg, Q.K., and Lorenz, P. (2002) Bacterial alkaline proteases: molecular approaches and industrial applications. Applied Microbiology and Biotechnology 59, 13-32.
Gragerov A., Zeng L., Zhao X., Burkholder W., Gottesman M.E. (1994) Specificity of DnaK-peptide binding. J. Mol. Biol. 235, 848–854.
Grimshaw J.P., Jelesarow I., Schönfeld H.J., Christen P. (2001) Reversible thermal transition in GrpE, the nucleotide exchange factor of the DnaK heat-shock system. J. Biol. Chem. 276, 6098–6104.
Grimshaw J.P.A, Jelesarov I., Siegenthaler R.K, Christen P. (2003) Thermosensor action of GrpE. The DnaK chaperone system at heat shock temperatures. J. Biol. Chem 278, 19048-19053.
Gröemping Y., Klostermeier D., Herrmann C., Veit T, Seidel R., Reinstein J. (2001) Regulation of ATPase and chaperone cycle of DnaK from Thermus thermophilus by the nucleotide exchange factor GrpE. J. Mol. Biol. 305, 1173–1183.
Gröemping Y. and Reinstein J. (2001) Folding properties of the nucleotide exchange factor GrpE form Thermus thermophiles: GrpE is a thermosensor that mediates heat shock reponse. J. Mol. Biol. 314, 167-178.
Grossman A.D., Straus D.B., Walker W.A., Gross C.A. (1987) Sigma 32 synthesis can regulate the synthesis of heat shock proteins in Escherichia coli. Genes Dev. 1, 179–184.
Harrison C.J., Hoyer-Hartl M., Di Liberto M., Hartl F, Kuriyan J. (1997) Crystal structure of the nucleotide exchange factor GrpE bound to the ATPase domain of the molecular chaperone DnaK. Science 276, 431–435.
Hendrick J. P., Hartl F. U. (1993) Molecular chaperone functions of heat-shock proteins. Annu. Rev. Biochem. 62, 349-384.
Hesterkamp T., Bukau B. (1998) Role of the DnaK and HscA homologs of Hsp70 chaperones in protein folding in E. coli. EMBO J. 17, 4818–4828.
Hibion, T., Kaku, N., Yoshikawa, H., Takabe, T., and Takabe, T. (1999) Molecular characterization of DnaK from the halotolerant cyanobacterium Aphanothece halophytica for ATPase, protein folding, and copper binding under various salinity conditions. Plant Molecular Biology 40, 409-418.
Holmes K.C., Sander C., Valencia A. (1993) A new ATP-binding fold in actin, hexokinase and Hsc70. Trends Cell Biol. 53–59.
Jaenicke R. (1991) Protein stability and molecular adaptation to extreme conditions. Eur. J. Biochem. 202, 715–728.
Jiang, J., Prasad, K., Lafer, E.M., and Sousa, R. (2005) Structural Basis of interdomain communication in the the Hsc70 chaperone. Molecular cell 20, 513-524.
John P.A. Grimshaw, Ilian Jelesarov, Hans-Joachim Schönfeld, and Philipp Christen (2001) Reversible Thermal Transition in GrpE, the Nucleotide Exchange Factor of the DnaK Heat-Shock System. J. Biol. Chem. 323, 6098-6104.
Kamath-Loeb A.S., Lu C.Z., Suh W.C., Lonetto M.A., Gross C.A. (1995) Analysis of three DnaK mutant proteins suggests that progression through the ATPase cycle requires conformational changes. J. Biol. Chem. 270, 30051–30059.
Kelly, S.M., Jess, T.J., and Price, N.C. (2005) How to study proteins by circular dichroism. Biochimica et Biophysica Acta 1751, 119-139
Kotzia GA, Labrou NE (2009) Engineering thermal stability of L-asparaginase by in vitro directed evolution. FEBS J 276, 1750–1761.
Lakowicz J.R. (2006) Principles of Fluorescence Spectroscopy, third ed., Springer, Singapore.
Laufen, T., Mayer, M.P., Beisel, C., Klostermeier, D., Mogk, A., Reinstein, J., and Bukau, B. (1999) Mechanism of regulation of Hsp70 chaperones by DnaJ cochaperones. Prc. Natl. Acad. Sci. USA. 96, 5452-5457
Liberek K., Marszalek J., Ang D., Georgopoulos C., Zylicz M. (1991) Escherichia coli DnaJ and GrpE heat shock proteins jointly stimulate ATPase activity of DnaK. Proc. Natl. Acad. Sci. U.S.A. 88, 2874–2878
Lobley A., Whitmore L., Wallace B.A. (2002) DICHROWEB: an interactive website for the analysis of protein secondary structure from circular dichroism spectra. Bioinformatics 18, 211–212.
Luders, J., Demand, J., Schonfolder, S., Frien, M., Zimmermann, R., and Hohfeld, J. (1998) Cofactor-induced Modulation of the functional specifity of the molecular chaperone Hsc 70. Biol.Chem. 379, 1217-1226
Mao D., Wachter E., Wallace B.A. (1982) Folding of the mitochondrial proton adenosinetriphosphatase proteolipid channel in phospholipid vesicles. Biochemistry 21, 4960–4968.
Mayer, M., and Bukau, B. (1998) Hsp 70 chaperone systems: Diversity of cellular functions and mechanism of action. Biol.Chem. 379, 261-268
Mayer, M. P., Schröder, H., Rüdiger, S., Paal, K., Laufen, T., and Bukau, B. (2000) Multiple mechanism of substrate binding determines chaperone activity of Hsp70. Nature Stru Bio.7, 586-593
Mayer, M.P., and Bukau, B. (2005) Hsp70 chaperones: cellular functions and molecular mechanism. Cellular and Molecular Life Sciences 62, 670-684.
McCarty J.S., Walker G.C. (1991) DnaK as a thermometer: threonine-199 is site of autophosphorylation and is critical for ATPase activity. Proc. Natl. Acad. Sci. U.S.A. 88, 9513–9517.
Miao B., Davis J.E., Craig E.A. (1997) Mge1 functions as a nucleotide release factor for Ssc1, a mitochondrial Hsp70 of Saccharomyces cerevisiae. J. Mol. Biol. 265, 541–553.
Michel G.P. (1993) Cloning and expression in Escherichia coli of the dnaK gene of Zymononas mobilis. J. Bacteriol. 175, 3228–3231.
Minder A.C., Narberhaus F., Babst M., Hennecke H., Fischer H.M. (1997) The dnaKJ operon belonging to the 32-dependent class of heat shock genes of Bradyrhizobium japonicum. Mol. Gen. Genet. 254, 195–206.
Ming, L.J., and Epperson, J.D. (2002) Metal binding and structure-activity relationship of the metalloantibiotic peptide bacitracin. Journal of Inorganic Chemistry 91, 46-58.
Miyazaki K., Arnold F.H. (1999) Exploring nonnatural evolutionary pathways by saturation mutagenesis: rapid improvement of protein function. J. Mol. Evol. 49, 716–720.
Mogk A., Bukau B., Lutz R., Schumann W. (1999) Construction and analysis of hybrid Escherichia coli-Bacillus subtilis dank genes. J. Bacteriol. 181, 1971–1974.
Montgomery D.L., Morimoto R.L., Gierasch L.M. (1999) Mutations in the substrate-binding domain of the Escherichia coli 70-kDa molecular chaperone, DnaK, which alter substrate affinity or interdomain coupling. J. Mol. Biol. 286, 915–932.
Morimoto, R. I., Kline, M. P., Bimston, D, N., and Cotto, J. J. (1997) The heat-shock response: regulation and function of heat-shock proteins and molecular chaperones. In Essays in Biochemistry volume 32 (Bowles, D. J., ed) pp.17-27, Portland and Press, London
Moro F., Muga A. (2006) Thermal adaptation of the yeast mitochondrial Hsp70 system is regulated by the reversible unfolding of its nucleotide exchange factor. J. Mol. Biol. 358, 1367–1377.
Moro F., Taneva S.G., Velàzquez-Campoy A., Muga A. (2007) GrpE N-terminal domain contributes to the interaction with Dnak and modulates the dynamics of the chaperone substrate binding domain. J. Mol. Biol. 374, 1054–1064.
Moussa C.E., Wersinger C., Rusnak M., Tomita Y., Sidhu A. (2004) Abnormal migration of human wild-type alpha-synuclein upon gel electrophoresis. Neurosci. Lett. 371, 239–243.
Murphy, T., Roy, I., Harrop, A., Dixon, K. and Keshavarz, T. (2007) Effect of oligosaccharide elicitors on bacitracin A production and evidence of transcriptional level control. Journal of Biotechnology 131, 397-403.
Naylor D.J., Hoogenraad N.J., Hoj P.B.. (1996) Isolation and characterization of a cdna encoding rat mitochondrial GrpE, a stress-inducible nucleotide-exchange factor of ubiquitous appearance in mammalian organs. FEBS Lett. 396, 181–188.
Offer G., Hicks M.R., Woolfson D.N. (2002) Generalized Crick equations for modeling noncanonical coiled coils. J. Struct. Biol. 137, 41–53.
Padhi S.K., Bougioukou D.J., Stewart J.D. (2009) Site-saturation mutagenesis of tryptophan 116 of Saccharomyces pastorianus old yellow enzyme uncovers stereocomplementary. J. Am. Chem. Soc. 131(9), 3271–3280.
Paek K.H., Walker G.C. (1987) Escherichia coli dnaK dull mutants are inviable at high temperatures. J. Bacteriol. 169, 283–290.
Palleros,D.S., Welch,W.J., and Fink.A.L. (1991) Interaction of hsp70 with unfolded proteins:Effects of temperature and nucleotides on the kinetics of binding. Proc.Natl.Acad.Sci.USA. 88, 5719-5723
Palleros, D.R., Reid, K.L., McCarty, J.S., Walker, G.C., and Fink, A.L. (1992) DnaK, Hsp73, and their molten globules: two different ways heat shock proteins respond to heat. The Journal of Biological Chemistry 276: 6098-6104.
Paek, K.H., and Walker, G.C. (1987) Escherichia coli dnaK dull mutants are inviable at high temperatures. Journal of Bacteriology 169,283-290.
Pelham H.R.B. (1986) Speculations on the functions of the major heat shock and glucose-regulated proteins. Cell 46, 959–961.
Popp S.L., Reinstein J. (2009) Functional characterization of the DnaK chaperone system from the archaeon Methanothermobacter thermautotrophicus DeltaH. FEBS Lett. 583, 575–578.
Revington, M., Zhang, Y., Yip, G.N.B., Kurochkin, A.V., and Zuiderweg, E.R.P. (2005) NMR investigations of allosteric processin in a two-domain Thermus Thermophilius Hsp70 molecular chaperone. J. Mol. Biol. 27, 168-183
Rey, M.W., Ramaiya, P., Nelson, B.A., Brody-Karpin, S.D., Zaretsky, E.J., Tang, M., Lopez de Leon, A., Xiang, H., Gusti, V., Clausen, I.G., Olsen, P.B., Rasmussen, M.D., Andersen, J.T., Joergensen, P.L., Laesen, T.S., Sorokin, A., Bolotin, A., Lapidus, A., Galleron, N., Ehrlich, S.D., and Berka, R.M. (2004) Complete genome sequence of the industrial bacterium Bacillus licheniformis and comparisons with closely related Bacillus species. Genome Biology 5, R077.1-R077.12.
Rothman J. (1989) Polypeptide chain binding proteins: catalysts of protein folding and related processes in cells. Cell 59, 591–601.
Sambrook, J., Fritsch, E.F., Maniatis, T. (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press, pp. 17.2-17.44.
Sambrook, J., Russel, D.W. (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.
Schlicker, C., Bukau, B., and Mogk, A. (2002) Prevention and reversion of protein aggregation by molecular chaperones in the E. coli cytosol: implication for their applicability in biotechnology. Journal of Biotechnology 96: 13-21.
Schönfeld H.J., Schmidt D., Shröder H., Bukau B. (1995) The DnaK chaperone system of Escherichia coli: quaternary structures and interactions of the DnaK and GrpE components. J. Biol. Chem. 270, 2183–2189.
Schroda M., Vallon O., Whitelegge J.P., Beck C.F., Wollman F.A. (2001) The chloroplastic GrpE homolog of Chlamydomonas: two isoforms generated by differential splicing. Plant Cell 13, 2823–2829.
Smith, D., Whitesell, L., and Katsanis, E. (1998) Molecular chaperones in biology and Prospects for Pharmacological intervention. American Soci. Pharmacology. 50, 493-500
Sneath P.H.A., Mair N.S., Sharpe M.E., Holt J.G. Bergey’s (1986) Manual of Systematic Bacteriology, vol. 2, Williams &Wilkins, Baltimore
Sugimoto S., Higashi C., Yoshida H., Sonomoto K. (2008) Construction of Escherichia coli dnaK-deletion mutant infected by lambdaDE3 for overexpression and purification of recombinant GrpE proteins. Protein Exp. Purif. 60, 31–36.
Sugimoto S., Saruwatari K., Higashi C., Sonomoto K. (2008) The proper ratio of GrpE to DnaK is important for protein quality control by the DnaK-DnaJ-GrpE chaperone system and for cell division. Microbiology 154, 1876–1885.
Suh W.C., Burkholder W.F., Lu C.Z., Zhao X., Gottesman M.F., Gross C.A. (1998) Interaction of the Hsp70 molecular chaperone, DnaK, with its co-chaperone DnaJ. Proc. Natl. Acad. Sci. U.S.A. 95, 15223–15228.
Suh, W., Burkholder, W.F., Lu, C.Z., Zhao, X., Gottesman, M.E., and Gross, C.A. (1998) Interaction of the Hsp70 molecular chaperone, DnaK with its cochaperone DnaJ. Prc. Natl. Acad. Sci.USA. 95, 15223-15228
Suh W.C., Lu C.Z., Gross C.A. (1999) Structural features required for the interaction of the Hsp70 molecular chaperone DnaK with its cochaperone DnaJ. J. Biol. Chem. 274, 30534–30539.
Szabo A., Langer T., Schröder H., Flanagan J., Bukau B., Hartl F.U. (1994) The ATP hydrolysis-dependent reaction cycle of the Escherichia coli Hsp70 system DnaK, DnaJ, and GrpE. Proc. Natl. Acad. Sci. U.S.A. 91, 10345–10349.
Tilly K., Hauser R., Cambell J., Ostheimer E.C. (1993) Isolation of dnaJ, dnaK, and grpE homologues from Borrelia burgdorferi and complementation of Escherichia coli mutants. Mol. Microbiol. 7, 359–369.
Tissieres, A., Mitchell, H.K., Tracy, U.M. (1974) Protein synthesis in salivary glands of Drosophila melanogaster: Relation to chromosome puffs. J. Mol. Biol. 85, 389-398.
Vieille C., Zeikus J.G. (1996) Thermozymes: Identifying molecular determinants of protein structural and functional stability. Trends Biotechnol. 14, 183–190.
Vogel, M., Mayer, M. P., and Bukau B. (2006) Allosteric Regulation of Hsp70 Chaperone Involves a Conserved Interdomain Linker. J. Biol. Chem. 281, 38705-38711
Watanabe, J. (1997) Cloning and characterization of heat shock protein DnaJ homologues from Plasmodium falciparum and comparison with ring infected erythrocyte surface antigen. Mol.&Biochem Parasitolgy. 88, 253-258
Wawrzynow, A., Banecki, B., Wall, D., Liberek, K., Georgopoulos,C., and Zylicz,M. (1995) ATP Hydrolysis Is Required for the DnaJ-dependent Activation of DnaK Chaperone for Binding to Both Native and Denatured Protein Substrates , J.Biol Chem . 270 (33), 19307-19311
Whitley, D., Goldberg, S., and Jordan, N. (1998) Heat shock proteins: A review of the molecular chaperone. J. Vasc Surg. 29, 748-751
Whitmore L., Wallace B.A. (2004) The Peptaibol Database: a database for sequences and structures of naturally occurring peptaibols. Nucleic Acids Res. 32, W668–W673.
Wilbanks S.M., McKay D.B. (1995) How potassium affects the activity of the molecular chaperone Hsc70. J. Biol. Chem. 270, 2251–2257.
Willmund F., Mühlhaus T., Wojciechowska M., Schroda M. (2007) The NH2-terminal domain of the chloroplast GrpE homolog CGE1 is required for dimerization and cochaperone function in vivo. J. Biol. Chem. 282, 11317–11328.
Wolfeis, O.S. (2005) Fluorescence spectroscopy in biology. Springer. 03, 3-25.
Wu B., Ang D., Snavely M., Georgopoulos C. (1994) Isolation and characterization of point mutations in the Escherichia coli grpE heat shock gene. J. Bacteriol. 176, 6965–6973.
Wu B., Wawrzynow A., Zylicz M., Georgopoulos C. (1996) Structure-function analysis of the Escherichia coli GrpE heat shock protein. EMBO J. 15, 4806–4816.
Zhang H., Lin L., Zeng C., Shen P., Huang Y.P. (2007) Cloning and characterization of a haloarchaeal heat shock protein 70 functionally expressed in Escherichia coli. FEMS Microbiol. Lett. 275, 168–174.
Zhu X., Zhao X., Burkholder W.F., Gragerow A., Ogata C.M., Gottesman M.E., Hendrickson W.A. (1996) Structural analysis of substrate binding by the molecular chaperone DnaK. Science 272, 1606–1614.
Żmijewski M.A., Macario A.J.L., Lipińska B. (2004) Functional similarities and differences of an archaeal Hsp70 (DnaK) stress protein compared with its homologue from the bacterium Escherichia coli .J. Mol. Biol. 336, 539–549.
Żmijewski M.A., Skórko-Glonek J., Tanfani F., Banecki B., Kotlarz A., Macario A.J., Lipińska B. (2007) Structural basis of the interspecies interaction between the chaperone DnaK (Hsp70) and the co-chaperone GrpE of archaea and bacteria. Acta. Biochim. Pol. 54, 245–252.
Zuo, R. (2007) Biofilms: strategies for metal corrosion inhibition employing microorganisms. Applied Microbiology and Biotechnology 76, 1245-1253.
Zylicz M., Georgopoulos C. (1984) Purification and properties of the Escherichia coli dnaK replication protein. J. Biol. Chem. 259, 8820–8825.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top