|
Alves V.S., Pimenta D.C., Sattlegger E., Castilho B.A. (2004) Biophysical characterization of Gir2, a highly acidic protein of Saccharomyces cerevisiae with anomalous electrophoretic behavior. Biochem. Biophys. Res. Commun. 314, 229-234. Armstrong Z., Reitinger S., Kantner T., Withers S.G. (2010) Enzymatic thioxyloside synthesis: characterization of thioglycoligase variants identified from a site-saturation mutagenesis library of Bacillus circulans xylanase. Chembiochem. 11(4), 533-538. Arrigo, A. (1998) Small proteins: chaperones that act as regulators of intracellular redox state and programmed cell death. Biol.Chem. 379, 19-26. Beckman R.P., Mizzen L.A., Welch W.J. (1990) Interaction of Hsp70 with newly synthesized proteins: implications for protein folding and assembly. Science 248, 850–854. Benaroudj N., Batelier G., Triniolles F., Ladjimi M.M. (1995) Self-association of the molecular chaperone HSC70. Biochemistry 34, 15282–15290. Birrer, G.A., Cromwick, A.M., and Gross, R.A. (1994) Poly(glutamic acid) formation of Bacillus licheniformis 9945a: physiological and biochemical studies. International Journal of Biological Macromolecules 16, 265-275. Blatch, G.L., and Lässle, M. (1999) The tetratricopeptide repeat: a structural motif mediating protein-protein interactions. BioEssays. 21, 932-939 Bricker, A., Scheufler, C., von der Mülbe, F., Fleckenstein, B., Herrmann, C., Jung, G., Moarefi, I., and Hartl, F. (2002) Ligand Discrimination By TPR Domains . J.Biol Chem. 277(22), 19265-19275 Bork, P., Sander, C., and Valencia, A. (1992) An ATPase domain common to prokaryotic cell cycle proteins, sugar kinases, actin, and hsp70 heat shock proteins. Prc. Natl. Acad. Sci. USA . 89 ,7290-7294 Boshoff, A., Hennessy, F., and Blatch, G.L. (2004) The in vivo and in vitro characterization of DnaK from Agrobacterium tumefaciens RUOR. Protein Expression and Purification 38, 161-169. Boshoff, A., Stephens, L.L., and Blatch, G.L. (2008) The Agrobacterium tumefaciens DnaK: ATPase cycle, oligomeric state and chaperone properties. The International Journal of Biochemistry & Cell Biology 40, 804-812. Bradford, M.M. (1976) A rapid and sensitive method for quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72, 248-254. Brehmer D., Rudiger S., Gassler C.S., Klostermeier D., Packschies L., Reinstein J., Mayer M.P., Bukau B. (2001) Tuning of chaperone activity of Hsp70 proteins by modulation of nucleotide exchange. Nat. Struct. Biol. 8, 427-432. Brychzy, A., Rein, T., Winklhofer, K. F., Hartl, F. U., Young, J. C. and Obermann, W. M. (2003) Cofactor Tpr2 combines two TPR domains and a J domain to regulate the Hsp70/Hsp90 chaperone system. EMBO J. 22, 3613–3623. Buchberger A., Gässler C.S., Büttner M., McMacken R., Bukau B. (1999) Functional defects of the DnaK756 mutant chaperone of Escherichia coli indicate distinct roles for amino and carboxyl terminal residues in substrate and co-chaperone interaction and interdomain communication. J. Biol. Chem. 274,38017-38026. Buchberger A., Valencia A., McMacken R., Sander C., Bukau B. (1994) The chaperone function of DnaK requires the coupling of ATPase activity with substrate binding through residue E171. EMBO J. 13, 1687–1695. Bukau, B., and Horwich A. L. (1998) The Hsp70 and Hsp60 chaperone machines. Cell 92, 351-366. Bukau, B., and Walker, G.C. (1989) Delta dnak52 mutants of Escherichia coli have defects in chromosome segregation and plasmid maintenance at normal growth temperatures. Journal of Bacteriology 171, 6030-6038. Bukau, B., Weissman, J., and Horwich, A. (2006) Molecular chaperone and protein quality control. Cell 125, 443-451 Cellier M.F., Teyssier J., Nicolas M., Liautard J.P., Marti J., Sri Widada J. (1992) Cloning and characterization of the Brucella ovis heat shock protein DnaK functionally expressed in Escherichia coli. J. Bacteriol. 174, 8036–8042. Chang Yi-Wei, Sun Yuh-Ju, Wang Chung, and Hsiao Chwan-Deng. (2008) Crystal structure of the 70-kDa heat shock protein in domain disjoining conformation. J. Biol. Chem. 283, 15502-15511. Cheetham, M. E., and Caplan, A. J. (1998) Structure, function and evolution of DnaJ: conservation and adaptation of chaperone function. Cell Stress & Chaperones. 3 (1), 28-36. Chesnokova L.S., Slepenkov S.V., Protasevich H., Schorn M.G., Brouillette C.G., Witt S.N. (2003) Deletion of DnaK’s lid strengthens binding to the nucleotide exchange factor, GrpE: a kinetic and thermodynamic analysis. Biochemistry 42, 9028–9040. Chen C.C., Cho Y.C., Lai C.C., Hsu W.H. (2009) Purification and characterization of a new Rhizopuspepsin from Rhizopus oryzae NBRC 4749. J. Agric. Food. Chem. 57(15), 6742-6747 Crabb, W.D., and Shetty, J.K. (1999) Commodity scale production of sugars from starches. Current Opinion in Microbiology 2, 252-256. Eftink (1991) Fluorescence techniques for study in protein structure. In Methods of Biochemical Analysis, Wiley, New York, 127-205 Eveleigh DE (1981) The microbial production of industrial chemicals. Scientific American 245, 155-178. Flaherty, K.M., DeLuca-Flaherty, C.,and Mckay, D. B (1990) Three-dimensional structure of the ATPase fragment of a 70K heat-shock cognate prtein. Nature 346, 623-628. Flaherty K.M., Wilbanks S.M., DeLuca-Flaherty C., McKay D.B. (1994) Structural basis of the 70-kilodalton heat shock cognate protein ATP hydrolytic activity. II. Structure of the active site with ADP or ATP bound to wild type and mutant ATPase fragment. J. Biol. Chem. 269, 12899–12907. Flynn G.C., Chappell T.G., Rothman J.E. (1989) Peptide binding and release by proteins implicated as catalysts of protein assembly. Science 245, 385–390. Freeman, B. C., Myers, M.P., Schumacher, R., and Morimoto, R.I. (1995) Identification of a regulatory motif in Hsp7 that affects ATPase activity, substrate binding and interaction with HDJ-1. EMBO. 14, 2281-2292. Garcia-Ortega L., de Los Rios V., Martínez-Ruiz A., Onaderra M., Lacadena J., Martinez del Pozo A., Gavilanes J.G. (2005) Anomalous electrophoretic behavior of a very acidic protein: ribonuclease U2. Electrophoresis 26, 3407-3413. Gelinas A.D., Langsetmo L., Toth J., Bethoney K.A., Stafford W.F., Harrison C.J. (2002) A structure-based interpretation of E.coli GrpE thermodynamic properties. J. Mol. Biol. 323, 131-142. Genevaux, P., Georgopoulos, C., and Kelly, W.L. (2007) The Hsp70 chaperone machines of Escherichia coli: a paradigm for the repartition of chaperone functions. Molecular Microbiology 66, 840-857. Gething M.J., Sambrook J. (1992) Protein folding in the cell. Nature 355, 33–45. Gupta, R., Beg, Q.K., and Lorenz, P. (2002) Bacterial alkaline proteases: molecular approaches and industrial applications. Applied Microbiology and Biotechnology 59, 13-32. Gragerov A., Zeng L., Zhao X., Burkholder W., Gottesman M.E. (1994) Specificity of DnaK-peptide binding. J. Mol. Biol. 235, 848–854. Grimshaw J.P., Jelesarow I., Schönfeld H.J., Christen P. (2001) Reversible thermal transition in GrpE, the nucleotide exchange factor of the DnaK heat-shock system. J. Biol. Chem. 276, 6098–6104. Grimshaw J.P.A, Jelesarov I., Siegenthaler R.K, Christen P. (2003) Thermosensor action of GrpE. The DnaK chaperone system at heat shock temperatures. J. Biol. Chem 278, 19048-19053. Gröemping Y., Klostermeier D., Herrmann C., Veit T, Seidel R., Reinstein J. (2001) Regulation of ATPase and chaperone cycle of DnaK from Thermus thermophilus by the nucleotide exchange factor GrpE. J. Mol. Biol. 305, 1173–1183. Gröemping Y. and Reinstein J. (2001) Folding properties of the nucleotide exchange factor GrpE form Thermus thermophiles: GrpE is a thermosensor that mediates heat shock reponse. J. Mol. Biol. 314, 167-178. Grossman A.D., Straus D.B., Walker W.A., Gross C.A. (1987) Sigma 32 synthesis can regulate the synthesis of heat shock proteins in Escherichia coli. Genes Dev. 1, 179–184. Harrison C.J., Hoyer-Hartl M., Di Liberto M., Hartl F, Kuriyan J. (1997) Crystal structure of the nucleotide exchange factor GrpE bound to the ATPase domain of the molecular chaperone DnaK. Science 276, 431–435. Hendrick J. P., Hartl F. U. (1993) Molecular chaperone functions of heat-shock proteins. Annu. Rev. Biochem. 62, 349-384. Hesterkamp T., Bukau B. (1998) Role of the DnaK and HscA homologs of Hsp70 chaperones in protein folding in E. coli. EMBO J. 17, 4818–4828. Hibion, T., Kaku, N., Yoshikawa, H., Takabe, T., and Takabe, T. (1999) Molecular characterization of DnaK from the halotolerant cyanobacterium Aphanothece halophytica for ATPase, protein folding, and copper binding under various salinity conditions. Plant Molecular Biology 40, 409-418. Holmes K.C., Sander C., Valencia A. (1993) A new ATP-binding fold in actin, hexokinase and Hsc70. Trends Cell Biol. 53–59. Jaenicke R. (1991) Protein stability and molecular adaptation to extreme conditions. Eur. J. Biochem. 202, 715–728. Jiang, J., Prasad, K., Lafer, E.M., and Sousa, R. (2005) Structural Basis of interdomain communication in the the Hsc70 chaperone. Molecular cell 20, 513-524. John P.A. Grimshaw, Ilian Jelesarov, Hans-Joachim Schönfeld, and Philipp Christen (2001) Reversible Thermal Transition in GrpE, the Nucleotide Exchange Factor of the DnaK Heat-Shock System. J. Biol. Chem. 323, 6098-6104. Kamath-Loeb A.S., Lu C.Z., Suh W.C., Lonetto M.A., Gross C.A. (1995) Analysis of three DnaK mutant proteins suggests that progression through the ATPase cycle requires conformational changes. J. Biol. Chem. 270, 30051–30059. Kelly, S.M., Jess, T.J., and Price, N.C. (2005) How to study proteins by circular dichroism. Biochimica et Biophysica Acta 1751, 119-139 Kotzia GA, Labrou NE (2009) Engineering thermal stability of L-asparaginase by in vitro directed evolution. FEBS J 276, 1750–1761. Lakowicz J.R. (2006) Principles of Fluorescence Spectroscopy, third ed., Springer, Singapore. Laufen, T., Mayer, M.P., Beisel, C., Klostermeier, D., Mogk, A., Reinstein, J., and Bukau, B. (1999) Mechanism of regulation of Hsp70 chaperones by DnaJ cochaperones. Prc. Natl. Acad. Sci. USA. 96, 5452-5457 Liberek K., Marszalek J., Ang D., Georgopoulos C., Zylicz M. (1991) Escherichia coli DnaJ and GrpE heat shock proteins jointly stimulate ATPase activity of DnaK. Proc. Natl. Acad. Sci. U.S.A. 88, 2874–2878 Lobley A., Whitmore L., Wallace B.A. (2002) DICHROWEB: an interactive website for the analysis of protein secondary structure from circular dichroism spectra. Bioinformatics 18, 211–212. Luders, J., Demand, J., Schonfolder, S., Frien, M., Zimmermann, R., and Hohfeld, J. (1998) Cofactor-induced Modulation of the functional specifity of the molecular chaperone Hsc 70. Biol.Chem. 379, 1217-1226 Mao D., Wachter E., Wallace B.A. (1982) Folding of the mitochondrial proton adenosinetriphosphatase proteolipid channel in phospholipid vesicles. Biochemistry 21, 4960–4968. Mayer, M., and Bukau, B. (1998) Hsp 70 chaperone systems: Diversity of cellular functions and mechanism of action. Biol.Chem. 379, 261-268 Mayer, M. P., Schröder, H., Rüdiger, S., Paal, K., Laufen, T., and Bukau, B. (2000) Multiple mechanism of substrate binding determines chaperone activity of Hsp70. Nature Stru Bio.7, 586-593 Mayer, M.P., and Bukau, B. (2005) Hsp70 chaperones: cellular functions and molecular mechanism. Cellular and Molecular Life Sciences 62, 670-684. McCarty J.S., Walker G.C. (1991) DnaK as a thermometer: threonine-199 is site of autophosphorylation and is critical for ATPase activity. Proc. Natl. Acad. Sci. U.S.A. 88, 9513–9517. Miao B., Davis J.E., Craig E.A. (1997) Mge1 functions as a nucleotide release factor for Ssc1, a mitochondrial Hsp70 of Saccharomyces cerevisiae. J. Mol. Biol. 265, 541–553. Michel G.P. (1993) Cloning and expression in Escherichia coli of the dnaK gene of Zymononas mobilis. J. Bacteriol. 175, 3228–3231. Minder A.C., Narberhaus F., Babst M., Hennecke H., Fischer H.M. (1997) The dnaKJ operon belonging to the 32-dependent class of heat shock genes of Bradyrhizobium japonicum. Mol. Gen. Genet. 254, 195–206. Ming, L.J., and Epperson, J.D. (2002) Metal binding and structure-activity relationship of the metalloantibiotic peptide bacitracin. Journal of Inorganic Chemistry 91, 46-58. Miyazaki K., Arnold F.H. (1999) Exploring nonnatural evolutionary pathways by saturation mutagenesis: rapid improvement of protein function. J. Mol. Evol. 49, 716–720. Mogk A., Bukau B., Lutz R., Schumann W. (1999) Construction and analysis of hybrid Escherichia coli-Bacillus subtilis dank genes. J. Bacteriol. 181, 1971–1974. Montgomery D.L., Morimoto R.L., Gierasch L.M. (1999) Mutations in the substrate-binding domain of the Escherichia coli 70-kDa molecular chaperone, DnaK, which alter substrate affinity or interdomain coupling. J. Mol. Biol. 286, 915–932. Morimoto, R. I., Kline, M. P., Bimston, D, N., and Cotto, J. J. (1997) The heat-shock response: regulation and function of heat-shock proteins and molecular chaperones. In Essays in Biochemistry volume 32 (Bowles, D. J., ed) pp.17-27, Portland and Press, London Moro F., Muga A. (2006) Thermal adaptation of the yeast mitochondrial Hsp70 system is regulated by the reversible unfolding of its nucleotide exchange factor. J. Mol. Biol. 358, 1367–1377. Moro F., Taneva S.G., Velàzquez-Campoy A., Muga A. (2007) GrpE N-terminal domain contributes to the interaction with Dnak and modulates the dynamics of the chaperone substrate binding domain. J. Mol. Biol. 374, 1054–1064. Moussa C.E., Wersinger C., Rusnak M., Tomita Y., Sidhu A. (2004) Abnormal migration of human wild-type alpha-synuclein upon gel electrophoresis. Neurosci. Lett. 371, 239–243. Murphy, T., Roy, I., Harrop, A., Dixon, K. and Keshavarz, T. (2007) Effect of oligosaccharide elicitors on bacitracin A production and evidence of transcriptional level control. Journal of Biotechnology 131, 397-403. Naylor D.J., Hoogenraad N.J., Hoj P.B.. (1996) Isolation and characterization of a cdna encoding rat mitochondrial GrpE, a stress-inducible nucleotide-exchange factor of ubiquitous appearance in mammalian organs. FEBS Lett. 396, 181–188. Offer G., Hicks M.R., Woolfson D.N. (2002) Generalized Crick equations for modeling noncanonical coiled coils. J. Struct. Biol. 137, 41–53. Padhi S.K., Bougioukou D.J., Stewart J.D. (2009) Site-saturation mutagenesis of tryptophan 116 of Saccharomyces pastorianus old yellow enzyme uncovers stereocomplementary. J. Am. Chem. Soc. 131(9), 3271–3280. Paek K.H., Walker G.C. (1987) Escherichia coli dnaK dull mutants are inviable at high temperatures. J. Bacteriol. 169, 283–290. Palleros,D.S., Welch,W.J., and Fink.A.L. (1991) Interaction of hsp70 with unfolded proteins:Effects of temperature and nucleotides on the kinetics of binding. Proc.Natl.Acad.Sci.USA. 88, 5719-5723 Palleros, D.R., Reid, K.L., McCarty, J.S., Walker, G.C., and Fink, A.L. (1992) DnaK, Hsp73, and their molten globules: two different ways heat shock proteins respond to heat. The Journal of Biological Chemistry 276: 6098-6104. Paek, K.H., and Walker, G.C. (1987) Escherichia coli dnaK dull mutants are inviable at high temperatures. Journal of Bacteriology 169,283-290. Pelham H.R.B. (1986) Speculations on the functions of the major heat shock and glucose-regulated proteins. Cell 46, 959–961. Popp S.L., Reinstein J. (2009) Functional characterization of the DnaK chaperone system from the archaeon Methanothermobacter thermautotrophicus DeltaH. FEBS Lett. 583, 575–578. Revington, M., Zhang, Y., Yip, G.N.B., Kurochkin, A.V., and Zuiderweg, E.R.P. (2005) NMR investigations of allosteric processin in a two-domain Thermus Thermophilius Hsp70 molecular chaperone. J. Mol. Biol. 27, 168-183 Rey, M.W., Ramaiya, P., Nelson, B.A., Brody-Karpin, S.D., Zaretsky, E.J., Tang, M., Lopez de Leon, A., Xiang, H., Gusti, V., Clausen, I.G., Olsen, P.B., Rasmussen, M.D., Andersen, J.T., Joergensen, P.L., Laesen, T.S., Sorokin, A., Bolotin, A., Lapidus, A., Galleron, N., Ehrlich, S.D., and Berka, R.M. (2004) Complete genome sequence of the industrial bacterium Bacillus licheniformis and comparisons with closely related Bacillus species. Genome Biology 5, R077.1-R077.12. Rothman J. (1989) Polypeptide chain binding proteins: catalysts of protein folding and related processes in cells. Cell 59, 591–601. Sambrook, J., Fritsch, E.F., Maniatis, T. (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press, pp. 17.2-17.44. Sambrook, J., Russel, D.W. (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York. Schlicker, C., Bukau, B., and Mogk, A. (2002) Prevention and reversion of protein aggregation by molecular chaperones in the E. coli cytosol: implication for their applicability in biotechnology. Journal of Biotechnology 96: 13-21. Schönfeld H.J., Schmidt D., Shröder H., Bukau B. (1995) The DnaK chaperone system of Escherichia coli: quaternary structures and interactions of the DnaK and GrpE components. J. Biol. Chem. 270, 2183–2189. Schroda M., Vallon O., Whitelegge J.P., Beck C.F., Wollman F.A. (2001) The chloroplastic GrpE homolog of Chlamydomonas: two isoforms generated by differential splicing. Plant Cell 13, 2823–2829. Smith, D., Whitesell, L., and Katsanis, E. (1998) Molecular chaperones in biology and Prospects for Pharmacological intervention. American Soci. Pharmacology. 50, 493-500 Sneath P.H.A., Mair N.S., Sharpe M.E., Holt J.G. Bergey’s (1986) Manual of Systematic Bacteriology, vol. 2, Williams &Wilkins, Baltimore Sugimoto S., Higashi C., Yoshida H., Sonomoto K. (2008) Construction of Escherichia coli dnaK-deletion mutant infected by lambdaDE3 for overexpression and purification of recombinant GrpE proteins. Protein Exp. Purif. 60, 31–36. Sugimoto S., Saruwatari K., Higashi C., Sonomoto K. (2008) The proper ratio of GrpE to DnaK is important for protein quality control by the DnaK-DnaJ-GrpE chaperone system and for cell division. Microbiology 154, 1876–1885. Suh W.C., Burkholder W.F., Lu C.Z., Zhao X., Gottesman M.F., Gross C.A. (1998) Interaction of the Hsp70 molecular chaperone, DnaK, with its co-chaperone DnaJ. Proc. Natl. Acad. Sci. U.S.A. 95, 15223–15228. Suh, W., Burkholder, W.F., Lu, C.Z., Zhao, X., Gottesman, M.E., and Gross, C.A. (1998) Interaction of the Hsp70 molecular chaperone, DnaK with its cochaperone DnaJ. Prc. Natl. Acad. Sci.USA. 95, 15223-15228 Suh W.C., Lu C.Z., Gross C.A. (1999) Structural features required for the interaction of the Hsp70 molecular chaperone DnaK with its cochaperone DnaJ. J. Biol. Chem. 274, 30534–30539. Szabo A., Langer T., Schröder H., Flanagan J., Bukau B., Hartl F.U. (1994) The ATP hydrolysis-dependent reaction cycle of the Escherichia coli Hsp70 system DnaK, DnaJ, and GrpE. Proc. Natl. Acad. Sci. U.S.A. 91, 10345–10349. Tilly K., Hauser R., Cambell J., Ostheimer E.C. (1993) Isolation of dnaJ, dnaK, and grpE homologues from Borrelia burgdorferi and complementation of Escherichia coli mutants. Mol. Microbiol. 7, 359–369. Tissieres, A., Mitchell, H.K., Tracy, U.M. (1974) Protein synthesis in salivary glands of Drosophila melanogaster: Relation to chromosome puffs. J. Mol. Biol. 85, 389-398. Vieille C., Zeikus J.G. (1996) Thermozymes: Identifying molecular determinants of protein structural and functional stability. Trends Biotechnol. 14, 183–190. Vogel, M., Mayer, M. P., and Bukau B. (2006) Allosteric Regulation of Hsp70 Chaperone Involves a Conserved Interdomain Linker. J. Biol. Chem. 281, 38705-38711 Watanabe, J. (1997) Cloning and characterization of heat shock protein DnaJ homologues from Plasmodium falciparum and comparison with ring infected erythrocyte surface antigen. Mol.&Biochem Parasitolgy. 88, 253-258 Wawrzynow, A., Banecki, B., Wall, D., Liberek, K., Georgopoulos,C., and Zylicz,M. (1995) ATP Hydrolysis Is Required for the DnaJ-dependent Activation of DnaK Chaperone for Binding to Both Native and Denatured Protein Substrates , J.Biol Chem . 270 (33), 19307-19311 Whitley, D., Goldberg, S., and Jordan, N. (1998) Heat shock proteins: A review of the molecular chaperone. J. Vasc Surg. 29, 748-751 Whitmore L., Wallace B.A. (2004) The Peptaibol Database: a database for sequences and structures of naturally occurring peptaibols. Nucleic Acids Res. 32, W668–W673. Wilbanks S.M., McKay D.B. (1995) How potassium affects the activity of the molecular chaperone Hsc70. J. Biol. Chem. 270, 2251–2257. Willmund F., Mühlhaus T., Wojciechowska M., Schroda M. (2007) The NH2-terminal domain of the chloroplast GrpE homolog CGE1 is required for dimerization and cochaperone function in vivo. J. Biol. Chem. 282, 11317–11328. Wolfeis, O.S. (2005) Fluorescence spectroscopy in biology. Springer. 03, 3-25. Wu B., Ang D., Snavely M., Georgopoulos C. (1994) Isolation and characterization of point mutations in the Escherichia coli grpE heat shock gene. J. Bacteriol. 176, 6965–6973. Wu B., Wawrzynow A., Zylicz M., Georgopoulos C. (1996) Structure-function analysis of the Escherichia coli GrpE heat shock protein. EMBO J. 15, 4806–4816. Zhang H., Lin L., Zeng C., Shen P., Huang Y.P. (2007) Cloning and characterization of a haloarchaeal heat shock protein 70 functionally expressed in Escherichia coli. FEMS Microbiol. Lett. 275, 168–174. Zhu X., Zhao X., Burkholder W.F., Gragerow A., Ogata C.M., Gottesman M.E., Hendrickson W.A. (1996) Structural analysis of substrate binding by the molecular chaperone DnaK. Science 272, 1606–1614. Żmijewski M.A., Macario A.J.L., Lipińska B. (2004) Functional similarities and differences of an archaeal Hsp70 (DnaK) stress protein compared with its homologue from the bacterium Escherichia coli .J. Mol. Biol. 336, 539–549. Żmijewski M.A., Skórko-Glonek J., Tanfani F., Banecki B., Kotlarz A., Macario A.J., Lipińska B. (2007) Structural basis of the interspecies interaction between the chaperone DnaK (Hsp70) and the co-chaperone GrpE of archaea and bacteria. Acta. Biochim. Pol. 54, 245–252. Zuo, R. (2007) Biofilms: strategies for metal corrosion inhibition employing microorganisms. Applied Microbiology and Biotechnology 76, 1245-1253. Zylicz M., Georgopoulos C. (1984) Purification and properties of the Escherichia coli dnaK replication protein. J. Biol. Chem. 259, 8820–8825.
|