跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.81) 您好!臺灣時間:2025/10/04 04:58
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:崔致豪
研究生(外文):Chih-Hao Tsui
論文名稱:高架型起重機系統的非線性與適應控制設計
論文名稱(外文):Nonlinear and Adaptive Control Design of An Overhead Crane System
指導教授:林容杉
指導教授(外文):Jung-Shan Lin
學位類別:碩士
校院名稱:國立暨南國際大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:英文
論文頁數:46
中文關鍵詞:高架型起重機位置追蹤控制遞迴步階設計適應性遞迴式步階設計
外文關鍵詞:Overhead crane systemPosition tracking controlBackstepping designAdaptive backstepping design.
相關次數:
  • 被引用被引用:0
  • 點閱點閱:272
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
由於需求的定位精準度,小擺動角度,短運輸時間,高安全性,無論運動方式和系統穩定都是現在高架型起重機領域非常熱門的研究領域。由於高架型起重機系統的致動不足方面是負載的搖晃,對於高架型起重機系統的繩索擺動角度與位置追蹤是非常難以控制的。所以我們利用高架型起重機系統的特性來設計。本論文主要的控制目標不僅是為了維持繩子在下垂的地位,而且還帶動起重機達到預期的參考位置。
為了實現高架型起重機系統的穩定度分析,在一開始先設計線性控制器來操作的線性高架型起重機系統。據線性化的情況下得到的資訊,原來的系統可以利用非線性遞迴步階控制器成功的達成我們的控制目標為。我們提出遞迴步階控制器不僅讓高架型起重機系統達到穩定的效果,而且還讓追踪誤差能收斂到零。此外,適應性遞迴步階控制器設計可以針對系統不確定性的追踪控制在高架型起重機系統。最後,會有一些模擬結果來說明控制器在高架型起重機系統有很好的成果。
Due to the requirements of exact positioning accuracy, small swing angle, short transportation time and high safety, both motion and stabilization control objectives for an overhead crane system have become interesting issues in the field of control technology
development. Since the overhead crane system is subject to underactuation with respect to the load sway dynamics, it is very hard to manipulate the crane system in a desired manner, namely, gantry position tracking and sway angle stabilization. The nonlinear and adaptive controllers based on backstepping design schemes are developed for the manipulation of overhead crane systems. The main control objective is not only to maintain the rope at the downcast position, but also to drive the crane to reach the desired reference position.
In order to analyze and realize the system properties of the overhead crane system, in the beginning, the linear controller is designed for the manipulation of the linearized overhead crane system. According the information from the linearized case, the nonlinear backstepping controllers can be successfully developed to achieve our control objectives for the original system. The proposed backstepping controllers are not only to stabilize the
overhead crane system, but also to drive the tracking errors to converge to zero asymptotically. In addition, an adaptive backstepping design scheme is developed and proposed to cope with system uncertainties for the tracking control of an overhead crane system. Finally, some simulation results are given to illustrate the excellent performance of the proposed controllers applied to an overhead crane system.
Contents i
List of Tables ii
List of Figures iii
1 Introduction 1
2 Modeling of Overhead Crane System 6
2.1 MathematicalModel . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 Problem Statements . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3 Nonlinear Backstepping Control Design 11
3.1 Linearized System. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2 Nonlinear Control Design . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.3 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4 Adaptive Backstepping Control 28
4.1 Adaptive Control Design . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.2 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
5 Conclusions and Future Works 39
Bibliography 42
[1] K. Moustafa and A. Ebeid, “Nonlinear Modeling and Control of Overhead Crane Load Sway”, ASME Journal of Dynamic System, Measurement and Control, vol. 110, pp. 266-271, 1988.
[2] A. Ebeid, K. Moustafa and H. Enara-shabik, “Electromechanical Modeling of Overhead Cranes”, International Journal of Systems Science, vol. 23, pp. 2155-2169, 1992.
[3] H.-H. Lee, “Modeling and Control of A Three-Dimensional Overhead Crane”, ASME Journal of Dynamic Systems, Measurement and Control, vol. 44, pp. 471-476, 1998.
[4] Y. Fang, E. Zergeroglu, W. E. Dixon and D. M. Dawson, “Nonlinear Coupling Control Laws for An Overhead Crane System”, Proceedings of the IEEE International Conference on Control Applications, pp. 639-644, 2001.
[5] Y. Fang, W. E. Dixon, D. M. Dawson and E. Zergeroglu, “Nonlinear Coupling Control Laws for An Underactuated Overhead Crane System”, IEEE/ASME Transactions on Mechatronics, vol. 8, pp. 418-423, 2003.
[6] Y. Fang, W. E. Dixon, D. M. Dawson and E. Zergeroglu, “Nonlinear Coupling Control Laws for A 3-DOF Overhead Crane System”, Proceedings of the IEEE Conference on Decision and Control, vol. 4, pp. 3766-3771, 2001.
[7] Y.-S. Kim, K.-S. Hong, and S.-K. Sul, “Anti-Sway Control of Container Cranes: Inclinometer, Observer, and State Feedback”, International Journal of Control, Automation, and Systems, vol. 2, no 4, pp. 435-449, 2004.
[8] H. Park, D. Chwa, and K.-S. Hong, “A Feedback Linearization Control of Container Cranes: Varying Rope Length”, International Journal of Control, Automation, and Systems, vol. 5, no 4, pp. 379-387, 2007.
[9] S.-K. Cho and H.-H. Lee, “An Anti-swing Control of A 3-Dimensional Overhead Crane”, Proceedings of the 2000 American Control Conference, vol. 2, pp. 1037-1041, 2000.
[10] H.-H. Lee and S,-G, Choi, “A Model-Based Anti-Swing Control of Overhead Cranes with High Hoisting Speeds”, Proceedings of the IEEE International Conference on Robotics and Automation, vol. 3, pp. 2547-2552, 2001.
[11] G. Corriga, A. Giua and G. Usai, “An Implicit Gain-Scheduling Controller for Cranes”, IEEE Transactions on Control Systems Technology, vol. 6, pp. 15-20, 1998.
[12] K. Prommaneewat, P. Roengruen and Kongratana, “Anti-Sway Control for Overhead Crane”, Proceedings of the IEEE International Conference on Automation and Systems, pp. 1945-1957, 2007.
[13] T. Nomura, Y. Kitsuka, H. Suemitsu and T. Matsuo, “Adaptive Backstepping Control for A Two-Wheeled Autonomous Robot”, Proceedings of the ICROSSICE International Joint Conference, pp. 4687-4692, 2009.
[14] A. Ebrahim and G. V. Murphy, “Adaptive Backstepping Controller Design of An Inverted Pendulum”, Proceedings of the Thirty-Seventh Southeastern Symposium on System Theorys, pp. 172-174, 2005.
[15] K. Yoshida, “Nonlinear Controller Design for A Crane System with State Constraints”, Proceedings of the 1998 American Control Conference, vol. 2, pp. 1277-1283, 1998.
[16] X. Zhang, B. Gao and H. Chen, “Nonlinear Controller for A Gantry Crane Based on Partial Feedback Linearization”, Proceedings of the IEEE International Conference on Control and Automation, vol. 2, pp. 1074-1078, 2005.
[17] K.-K. Shyu, C.-L. Jen and L.-J. Shang, “Sliding-Mode Control for An Underactuated Overhead Crane System”, Proceedings of the IEEE Annual Conference on Industrial Electronics, pp. 412-417, 2006.
[18] K.-K. Shyu, C.-L. Jen and L.-J. Shang, “Design of Sliding-Mode Controller for Anti-Swing Control of Overhead Cranes”, Proceedings of the IEEE Annual Conference on Industrial Electronics, 2005.
[19] Y.-J. Hua and Y.-K Shine, “Adaptive Control for 3-D Overhead Crane Systems”, Proceedings of the 1998 American Control Conference, 2006.
[20] H. Butler, G. Honderd and J. V. Amerongen, “Model Reference Adaptive Control of A Gantry Crane Scale Model”, IEEE Control Systems Magazine, vol. 8, pp. 57-62, 1991.
[21] M.-S. Park, D.-Y. Chwa and S.-K. Hong, “Anti-Sway Tracking Control of Overhead Cranes with System Uncertainty and Actuator Nonlinearity Using An Adaptive Fuzzy Sliding-Mode Control”, IEEE Transactions on Industrial Electronics, vol. 55, pp. 3972-3984, 2008.
[22] C.-Y. Chang, K.-C. Hsu, K.-H. Chiang and G.-E. Huang, “An Enhanced Adaptive Sliding Mode Fuzzy Control for Positioning and Anti-Swing Control of The Overhead Crane System”, Proceedings of the IEEE International Conference on Systems, Man and Cybernetics, vol. 2, pp. 992 - 997, 2006.
[23] F.-K. Tsai and J.-S. Lin, “Nonlinear Control Design of 360-Degree Inverted Pendulum System”, Proceedings of the Fourth International Conference on Control and Automation, Montreal, Canada, pp. 634-638, 2003.
[24] J.-S. Lin and C.-J Huang, “Nonlinear Backstepping Control Design of Half-Car Active Suspension System”, International Journal of Vehicle Design, vol. 33, no. 4, pp. 332-350, 2003.
[25] C.-J. Huang and J.-S. Lin, “Nonlinear Active Suspension Control Design Applied to A Half-Car Model”, Proceedings of the IEEE International Conference on Networking, Sensing and Control, pp. 719-724, 2004.
[26] W.-E. Ding and J.-S. Lin, “ Nonlinear Control Design of Anti-Lock Braking Systems Combined with Active Suspensions”, Proceedings of the 5th Asian Control Conference, 2005.
[27] W.-E. Ding and J.-S. Lin, “ Nonlinear Backstepping Anti-Lock Braking System Design Combined with Active Suspensions”, Preprints of the 16th World Congress of International Federation of Automatic Control, pp. 610-615, 2004.
[28] S.-S. Ke and J.-S Lin, “Adaptive Backstepping Speed Tracking for Permanent Magnet Synchronous Motors”, Proceedings of 2005 CACS Automatic Control Conference Taiwan, Taiwan, pp. 188-189, 2005.
[29] B.-Y. Fu and J.-S Lin, “Adaptive Position Tracking Control for Permanent Magnet Synchronous Motors”, Proceedings of 2008 CACS Automatic Control Conference Taiwan, Taiwan, pp. 117-118, 2008.
[30] H. K. Khalil, Nonlinear Systems, 3rd ed., Upper Saddle River, NJ: Prentice-Hall, 2002.
[31] M. Krstic, I. Kanellakopoulos and P. V. Kokotovic, Nonlinear and Adaptive Control Design, New York, NY: John Wiley Sons, 1995.
[32] M. W. Spong, “Partial Feedback Linearization of Underactuared Mechanical Systems”, Proceedings of the IEEE International Conference on Intelligent Robots and System, vol. 1, pp. 314-321, 1994.
[33] Y.-C. Fu and J.-S. Lin, “Nonlinear Backstepping Control Design of the Furuta Pendulum”, Proceedings of the IEEE International Conference on Applications, pp. 96-101, 2005.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top