跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.176) 您好!臺灣時間:2025/09/07 21:57
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:吳伊婷
研究生(外文):Wu, Yiting
論文名稱:利用Hydroxylamine鑑定及模式模擬同時硝化脫硝反應程序
論文名稱(外文):Application Hydroxylamine to Identify and Model Simultaneous Nitrification and Denitrification (SND) Process
指導教授:張鎮南張鎮南引用關係
指導教授(外文):Chang, Chengnan
口試委員:邱應志卓伯全郭獻文
口試委員(外文):Chiu, YingchihCho, PochuanKuo,Hsienwen
口試日期:2012-07-23
學位類別:碩士
校院名稱:東海大學
系所名稱:環境科學與工程學系
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:英文
論文頁數:101
中文關鍵詞:廢棄活性污泥同時硝化脫硝實驗設計方法羥胺
外文關鍵詞:waste activated sludge (WAS)simultaneous nitrification and denitrification (SND)design of experimental (DOE)hydroxylamine (NH2OH)
相關次數:
  • 被引用被引用:0
  • 點閱點閱:384
  • 評分評分:
  • 下載下載:32
  • 收藏至我的研究室書目清單書目收藏:0
本研究利用實驗設方法 (DOE),找出製作多孔性載體之最佳配比。利用回收污泥製作的生物載體應用於循序批分式反應槽中(SBBR),將兩個系統(20%及40%) 載體添加比例的水質分析數據進行比較,並利用中間產物羥胺(Hydroxylamine,NH2OH) 鑑定及模式模擬同時硝化脫硝反應程序 (SND)。由實驗結果得知,製作生物載體之最佳配比為污泥 5: 紅土 4: 化學添加劑 1。其抗壓強度為35.3 ± 3.5 kgf/cm2,外部比表面積2.6 ± 0.1cm2/g,密度1.8 ± 0.4 g/cm3及吸水率45.2 ± 5.8 %。透過羥胺(Hydroxylamine,NH2OH)鑑定SND反應程序,當反應槽系統中較高的氨氮量轉換為亞硝酸鹽時,NH2OH生成量會隨之增加,即可增加反應槽硝化率及提升反應槽SND的總去除率。每克的氨氮分別生成7.61 ×10–7 的NH2OH及5.61 ×10–7 的NO2–。此外,SBBR- 40% 載體添加比例之反應槽系統(KSND 8.6)之去除效率較SBBR- 20% (KSND 8.3)為佳。整體的結果顯示,添加較高比例的生物載體,有利於更多生物量生長,增加反應槽系統中生物量濃度,並可提升整體之去除效率。
This study applying design of experiment (DOE) method to obtain the optimal formula to assembly the pellets rebuild the WAS into porous immobilized pellets, which can both reduce the organic and nutrient substance in wastewaters. Two different carrier ratio (20% and 40%) pellets added to SBBR systems, then, applying NH2OH to identify the model for simultaneous nitrification and denitrification (SND) process. The results indicate WAS content pellets, can obtain an optimal formula sludge 5: laterite 4: chemical additive: 1. The pellet has the compressive strength: 35.3 ± 3.5 kgf/cm2, specific external surface area of 2.6 ± 0.1cm2/g, bulk density: 1.8 ± 0.4 g/cm3 and water absorption: 45.2 ± 5.8%. And then reused the pellet in sequencing batch biofilm reactor (SBBR) and can enhance wastewater treatment performance significantly. Results shows that the higher hydroxylamine (NH2OH) released, the more ammonium be converted into nitrite, and the total SND removal efficiency also can upgrade due to the high KN in the system based upon the NH2OH released from the system. In the first part of SND process, it is found a NH2OH and NO2– release rate of 7.61 ×10–7 and 5.61 ×10–7 g/g MLSSd∙NH4+-N. Furthermore, the SND efficiency for the SBBR-40% ratio system (KSND 8.6) were better than that of the SBBR 20% system (KSND 8.3). The overall results suggested the higher carrier filling ratio, the more biomass can be retained in the reactors, and can increase biomass concentration in reactors with corresponding higher specific removal efficiencies.
CONTENTS
CHAPTER 1 INTRODUCTION 1
Background information 1
Objective of research 4
CHAPTER 2 LITERATURE REVIEW 5
2.1 Wasted Activated Sludge (WAS) 5
2.1.2 Recycling Wasted Activated Sludge 8
2.2 The WAS sintering theory 11
2.2.1 Mechanism of forming 11
2.2.2 Mechanism of Sintering 12
2.3 Mechanism of immobilized system 15
2.3.1 Attached biofilm on the biofilm carriers 15
2.3.2 The biofilm system 18
2.4 Biological nutrient removal (BNR) 19
2.4.1 Nitrification 19
2.4.2 Denitrification 21
2.4.3 Simultaneous nitrification and denitrification (SND) 22
2.5 Sequencing batch biofilm reactor (SBBR) 24
2.6 Nernst Equation 27
2.7 Design of Experiments (DOE) 29
CHAPTER 3 MATERIAL AND METHODS 30
3.1 Experimental design and flow chart 30
3.2 Rebuilt WAS as biofilm carrier 32
3.2.1 Characteristic and sources of WAS 32
3.2.2 The procedure of manufacture the WAS pellets 33
3.3 The WAS sampling and basic characteristics analysis 35
3.3.1 Water absorption 35
3.3.2 Compressive strength 36
3.3.3 Bulk density 36
3.3.4 Specific external surface area 37
3.3.5 Toxicity characteristics leaching procedure (TCLP) 38
3.4 The sequencing batch biofilm reactor (SBBR) system 39
3.4.1 Experiment setup 39
3.4.2 Experiment operation 41
3.4.3 Composition of the synthetic wastewater 43
3.5 The methods of analysis 46
3.5.1 Water quality analysis 46
3.5.2 Field Emission Gun Scanning Electron Microscopy (FESEM) 48
3.5.3 The particle size analysis 48
3.5.4 The B.E.T analysis 49
CHAPTER 4 RESULTS AND DISCUSSION 50
4.1 The basic characteristic of the domestic waste activated sludge 50
4.2 The characteristic of the biofilm carrier pellets 54
4.2.1 The TCLP test 57
4.2.2 The pellets surface image and composition 58
4.2.3 The B. E. T analysis of the pellets 61
4.3 Apply the rebuilt WAS pellets in SBBR systems 63
4.3.1 The daily monitor profiles in system 63
4.3.2 The profiles of a cycle in the two SBBR systems 66
4.3.3 The profiles of batch tests 71
4.3.4 Identification of the SND process with hydroxylamine 73
4.3.5 The biomass of two pellets in systems 80
4.3.6 The carriers filling ratio to the removal rate 81
4.4 Comparison the KN, KDN and SND efficiency of different systems 83
4.5 Model Development 86
4.5.1 Overall SND process in SBBR system 86
4.5.2 Nernst Equation established in SND Process 87
4.5.3 Application SBBR SND system 91
CHAPTER 5 CONCLUSIONS AND SUGGESTIONS 92
5.1 Conclusions 92
5.2 Suggestions 93
REFERENCE 94



LIST OF FIGURE
Figure 2-1The granule agglutination response schematic drawing (German, 1996). 13
Figure 2-2 Schematic presentation of the formation of a biofilm (Wijffels and Tramper, 1995). 16
Figure 2-3 Diagram of oxygen and mass transfer of immobilized system under nitrogen removal reaction (Semmens et al., 2003). 18
Figure 2-4 Flow chart of conventional nitrification/denitrification and one-step SND via nitrite pathway (Tsao, 2001). 23
Figure 3-1 The flow chart of this study included three parts. Part (A): Rebuilt the WAS pellets as a biofilm carrier. Part (B): Develop the SBBR system. Part (C): Apply the NH2OH to identify SND process. Part (D): The Nernst equation with the SND process. 31
Figure 3-2 The flowchart showing a method of manufacture the WAS biofilm carrier pellet. 34
Figure 3-3 Schematic diagram of the SBBR system with 20% (A) and 40% (B) of pellets in the reactor to conduct SND reaction. All connected with on-line DO, pH and ORP sensor to a Lab VIEW system in a personal computer. 41
Figure 3-4 Operation cycle in (a) The operation stage of cultured sludge. (b) The operation stage of SND process. 42
Figure 3-5 Flow chart of the NH2OH analysis (Peng, 2002). 47
Figure 4-1 The particles size distribution analysis of the WAS powder after grounded by the ball mill machine. The peak of WAS is 15μm. 53
Figure 4-2 Surface plot of surface area (m2/g), dry sludge (%) and temperature (℃) from DOE analysis. 56
Figure 4-3 Surface plot of compressive strength (CS) (Kgf/cm2), dry sludge (%) and temperature (℃) from DOE analysis. 56
Figure 4-4 The rebuilt WAS pellets with the formula ratio of WAS: laterite: chemical additive is 5:4:1, which the sludge proportion of 50% and their diameters were between 12 to 15 mm. 59
Figure 4-5 The SEM image of the reused WAS porous pellets surface. 60
Figure 4-6 The daily profiles of COD in two types of system (SBBR 20% ratio and 40% ratio). The period of Loading Ⅰ (F/M: 0.526 kg COD/ kg MLSS-day) under 70 days, Loading Ⅱ (F/M: 0.621 kg COD/ kg MLSS-day) under 40 days and highest concentration was Loading Ⅲ(F/M: 0.776 kg COD/ kg MLSS-day) under 40 days, respectively. 64
Figure 4-7 The daily profiles of NH4+-N in two types of system (SBBR 20% ratio and 40% ratio). The operation period of Loading stage I, II and III are 70 days, 40 days and 40 days, respectively. Loading Ⅰ (F/M: 0.056 kg NH4+-N / kg MLSS-day), Loading Ⅱ(F/M: 0.073 kg NH4+-N / kg MLSS-day) and Loading Ⅲ(F/M: 0.097 kg NH4+-N / kg MLSS-day), respectively. 65
Figure 4-8 The on-line measured parameters (ORP, pH and DO), COD, nitrogen and phosphate concentration in the batch test of the SBBRⅠsystem (20% ratio) (Loading I); (a): the profiles of ORP, DO and pH; (b): COD, NH4+-N, NO2--N, NO3--N, and PO43--P concentration. 68
Figure 4-9 The on-line measured parameters (ORP, pH and DO), COD, nitrogen and phosphate concentration in the batch test of the SBBRⅡsystem (40% ratio) (Loading I); (a): the profiles of ORP, pH and DO; (b): COD, NH4+-N, NO2--N, NO3--N, and PO43--P concentration. 70
Figure 4-10 The comparison batch tests of various Loadings (I, II and III) in SBBR 20% ratio (a) COD, (b) NH4+-N, (c) NO2--N, (d) NO3--N and (e) PO43--P. 72
Figure 4-11 The comparison batch tests of various Loadings (I, II and III) in SBBR 40% ratio (a) COD, (b) NH4+-N, (c) NO2--N, (d) NO3--N and (e) PO43--P. 73
Figure 4-12 The profile of hydroxylamine (NH2OH) in SBBR 20% and 40% ratio systems with three loading systems. 77
Figure 4-13 The nitrification kinetic constant KN and NH2OH (g) generated form the reactor. ○: stage Ⅰ, △: stage Ⅱ, □: stage Ⅲ, SBBR 20%; ●: stage Ⅰ, ▲: stage Ⅱ, ▓: stage Ⅲ, SBBR 40%. 77
Figure 4-14 The nitrification kinetic constant KN and NO2- (g) generated form the reactor. ○: stage Ⅰ, △: stage Ⅱ, □: stage Ⅲ, SBBR 20%; ●: stage Ⅰ, ▲: stage Ⅱ, ▓: stage Ⅲ, SBBR 40%. 78
Figure 4-15 The nitrification kinetic constant KSND and NH2OH (g) generated form the reactor. ○: stage Ⅰ, △: stage Ⅱ, □: stage Ⅲ, SBBR 20%; ●: stage Ⅰ, ▲: stage Ⅱ, ▓: stage Ⅲ, SBBR 40%. 78
Figure 4-16 The correlation between loadings and Kd for 20% and 40% ratio pellets in SBBR systems. 79
Figure 4-17 The biomass of two pellets (20% and 40% ratio). 80
Figure 4-18 The comparison of simulated and experimented ORP profile for “only mix” and “mix and aerate” steps of SBBR system with 40% ratio pellets. 88
Figure 4-19 The comparison of simulated (second stage model) and experimented ORP profile for “mix and aerate” step of SBBR system with 40% ratio pellets. 90



LIST OF TABLE
Table 2-1 Application of wasted activated sludge (WAS) 10
Table 2.2 Various types and temperature of overflowed gases with all kinds of chemical compounds. 14
Table 2-3 The treatment performance by using SBR and SBBR systems from references. 26
Table 3-1 The Regulation of heavy metal concentration of leaching. 38
Table 3-2 The type specification of experiment setup. 40
Table 3-3 The composition of the stock synthetic wastewater in this study* 44
Table 3-4 The water quality of influent synthetic wastewater. 45
Table 3-5 The analytic methods and instruments used in this study 47
Table 4-1 The basic characteristics of the wasted activated sludge and laterite sample (after 105℃treatment for 2 days) of Futian water resource recycling center of Taichung city and Tunghai University. 51
Table 4-2 The TCLP tests for heavy metal concentration of Futian WAS and laterite. 51
Table 4-3 The comparison the basic characteristics of the porous WAS pellets in this study and other references. 55
Table 4-4 The TCLP test for heavy metal concentration of the porous WAS pallets. 57
Table 4-5 The comparison of reused immobilized media by surface area (B.E.T) and efficiency in this study and other references. 62
Table 4-6 The nitrification removal rate. 75
Table 4-7 The comparison of carrier filling ratios in this study and other references. 82
Table 4-8. The comparison of nitrification rate (KN), denitrification rate (KDN) and SND efficiency in different systems in this reactor and other references. 84
Table 4-9 Results of the Nernst equation for “only mix” and “mix and aerate” steps in two SBBR systems 88
Table 4-10. Results of the second stage Nernst equation for “mix and aerate” step in SBBR systems with rebuilt WAS pellets. 90


Ahn, Y. H., (2006). Sustainable nitrogen elimination biotechnologies: A review, Process Biochem., Vol. 41, pp. 1709-1721.
Akın, B. S., and Ugurlu, A., (2005). Monitoring and control of biological nutrient removal in a Sequencing Batch Reactor. Process Biochemistry Vol. 40, pp. 2873-2878.
Boejie, G. M., Schowanek, D. R., Vanrolleghem PA. (2003). Incorporation of biofilm activity in river biodegradation modeling: a case study for linear alkylbenzene suplhonate (LAS). Water Res, Vol. 34(5), pp. 1479-86.
Bhatty, J. I. and Redit K. J., (1989). Moderate strength concrete from lightweight sludge ash aggregates. The International Journal of Cement Composites and Lightweight Concrete, Vol. 11(3), pp. 179-187.
Cassidy, D.P., Efendiev, S., White, D.M., (2000). A comparison of CSTR and SBR bioslurry reactor performance. Water Res. Vol. 34, pp. 4333-4342.
Cheeseman, C. R. and Virdi, G. S., (2005). Properties and microstructure of lightweight aggregate produced from sintered sewage sludge ash Resour. Conserv.Recy., Vol. 45,pp. 18-30.
Cheeseman, C. R., Sollars, C. J. and McEntee, S., (2003). Properties, microstructure and leaching of sintered sewage sludge ash. Adv. Environ. Res., Vol. 40, pp. 13-25.
Cheng, N. C., Hong, B. C., Chao, A. C., (2004). Applying the Nernst Equation to simulate redox potential variations for biological nitrification and denitrification processes. Environ. Sci. Technol, Vol. 38, pp. 1807-1812.
Chiang, Y. P., Liang, Y. Y., Chang, C. N. and Chao, A. C., (2006). Differentiating ozone direct and indirect reactions on decomposition of humic substances. Chemosphere, Vol. 65, pp. 2395-2400.

Chiu, Y. C., Lee, L. L., Chang, C. N., Chao, A. C., (2007). Control of carbon and ammonium ratio for simultaneous nitrification and denitrification in a sequencing batch bioreactor. International Biodeterioration & Biodegradation. Vol. 59, pp. 1-7.
Chiou, I. J., Wang, K. S., Chen, C. H., Lin, Y. T., (2006). Lightweight aggregate made from sewage sludge and incinerated ash. Waste Manage. Vol. 26, pp. 1453-1461.
Chu, C. P., and Lee, D. J., (2002). Sludge management strategy and sustainable management. Bulletin of the College of Engineering, N.T.U., No. 84, February 2002, pp. 91-101.
Chu, L., Zhang, X., Yang, F. and Li, X., (2006). Treatment of domestic wastewater by using a microaerobic membrane bioreactor. Desalination, Vol. 189, pp. 181-192.
Daniel, L.M.C., Pozzi, E., Foresti, E., Chinalia, F.A., (2009). Removal of ammonium via simultaneous nitrification-denitrification nitrite-shortcut in a single packedbed batch reactor. Bioresour. Technol. Vol. 100, pp. 1100-1107.
Dewil, R., Baeyens J. and Neyens E., (2005). Fenton peroxidation improves the drying performance of waste activated sludge, J. Hazard. Mater., Vol. B117, pp. 161-170.
Ding, D. H., Feng, C. P., Jin, Y. X., Hao, C. B., Zhao, Y. X., Suemura, Takashi., (2011). Domestic sewage treatment in a sequencing batch biofilm reactor (SBBR) with an intelligent controlling system. Desalination, Vol. 276, pp. 260-265.
Ding, W. C., Zeng, X. L., Wang, Y. F., Du, Y., Zhu, Q. X., (2011). Characteristics and performances of biofilm carrier prepared from agro-based biochar. China Environmental Science, Vol. 31(9), pp. 1451-1455.
Fu, B., Liao, X.Y., Ding, L.L., Ren, H.Q., (2010). Characterization of microbial community in an aerobic moving bed biofilm reactor applied for simultaneous nitrification and denitrification. World J. Microbiol. Biotechnol. Vol.26, pp. 1981-1990.
Gao, D., Peng, Y., Li, B., Liang, H., (2009). Shortcut nitrificationedenitrification by real-time control strategies. Bioresour. Technol. Vol. 100, pp. 2298-2300.
Ge, S. J., Peng, Y. Z., Wang, S. Y., Gao, J. H., Ma, B., Zhang, L. A., Cao, X., (2010). Enhance nutrient removal in a modified step feed process treating municipal wastewater with different inflow distribution ratios and nutrient ratios. Bioresource Technology, Vol. 101, pp. 9012-9019.
German, R. M., (1996). Sintering theory practice, An Imprint of Wiley, ISBN, 0-471-05786-X.
Gulnaz, O., Kaya, A. and Dincer, S., (2006). The reuse of dried activated sludge for adsorption of reactive dye, J. Hazard. Mater, Vol. B134, pp. 190-196.
Gunawan, E.R., Basri, M., Abd Rahman, M.B., Salleh, A.B., Abd Rahman, R.N.Z., (2005). Study on response surface methodology (RSM) of lipase-catalyzed synthesis of palm-based wax esters. Enzym. Microb. Technol. Vol. 37, pp. 739-744.
Guo, J., Peng, Y., Wang, S., Zheng, Y., Huang, H., Wang Z., (2009). Long-term effect of dissolved oxygen on partial nitrification performanceand microbial community structure. Bioresource Technology 100 (2009) 2796–2802.
Hao, J. O., Kim, H., (2000). pH and oxidation reduction potential (ORP) strategy for optimization of nutrient removal in an alternating aerobic-anoxic system. Water Environ. Res. Vol. 73 (1), pp. 95-102.
Huang, C., Pan, J. R., Sun, K. D. and Liaw, C. T., (2001). Reuse of water treatment plant sludge and dam sediment in brick-making.
Ishida, C.K., Kelly, J.J., Gray, K.A., (2006). Effects of variable hydroperiods and water level fluctuations on denitrification capacity, nitrate removal, and benthic-microbial community structure in constructed wetlands. Ecol. Eng. Vol. 28, pp. 363-373.
Joan, A. Cusido., Cecilia, Soriano., (2011). Valorization of pellets from municipal WWTP sludge in lightweight clay ceramics. Waste Management, Vol. 31, pp.1372-1380.

Joaquim, C. G., Esteves, da. Silva., José, R. M.. Dias and Júlia, M. C., Magalhães, S. (2001). Factorial analysis of a chemiluminescence system for bromate detection in water, Analytiea Chimica Acta, pp. 175-184.
Jin, Y. X., Ding , D. H., Feng, C. P., Tong, S., Suemura, T. S., Zhang, F., (2011). Performance of sequencing batch biofilm reactors with different control systems in treating synthetic municipal wastewater. Bioresource Technology.
Jeong, Y. S., Chung, J. S., (2006). Biodegradation of thiocyanate in biofilm reactor using fluidized-carriers. Process Biochemistry, Vol. 41, pp. 701-707.
Katarzyna Bernat, Dorota Kulikowska , Magdalena Zielinska, Agnieszka Cydzik-Kwiatkowska, Irena Wojnowska-Baryła., (2011). Nitrogen removal from wastewater with a low COD/N ratio at a low oxygen concentration. Bioresource Technology, Vol. 102, pp. 4913-4916.
Kim, C. G., Lee, H. S. and Yoon, T. I., (2003). Resource recovery of sludge as a micro-media in an activated sludge process. Adv. Environ. Res, Vol. 7, pp. 629-633.
Kim, D., Jung, N., Park, Y.,( 2008). Characteristics of nitrogen and phosphorus removal in SBR and SBBR with different ammonium loading rates. Korean J. Chem. Eng. Vol. 25, pp. 793-800.
Kishida, N., Kim, J., Tsuneda, S. and Sudo, R., (2006). Anaerobic/oxic/anoxic granular sludge process as an effective nutrient removal process utilizing denitrifying polyphosphate-accumulating organisms, Wat. Res., Vol. 40, pp. 2303-2310.
Li, J., Xing, X. H. and Wang, B. Z., (2003). Characteristics of phosphorus removal from wastewater by biofilm sequencing batch reactor (SBR), Biochem. Eng. J., Vol. 16, pp. 279-285.
Liu, Y., Lin, Y. M., Yang, S. F., Tay, J. H., (2003). A balanced model for biofilms developed at different growth and detachment forces. Process Biochemistry, Vol. 38(12), pp. 1761-1765.

Lu, L. A., Mathava Kumar., Tsai, J. C., Lin, J. G., (2008). High-rate composting of barley dregs with sewage sludge in a pilot scale bioreactor. Bioresource Technology, Vol. 99, pp. 2210-2217.
Michaud, L., Blancheton, J. P., Bruni, V. and Piedrahita, R., (2006). Effect of particulate organic carbon on heterotrophic bacterial populations and nitrification efficiency in biological filters. Aquacult. Eng., Vol. 34, pp. 224-233.
Park, S. J., Lee, H. S., Yoon, T. I., (2008). The evaluation of enhanced nitrification by immobilized biofilm on a clinoptilolite carrier. Bioresource Technology. Vol. 82, pp. 183-189.
Qi, Y., Yue, Q., Han, S., Yue, M., Gao, B., Yu, H., Shao, T., 2010. Preparation and mechanism of ultra-lighweight ceramics produced from sewage sludge. J. Hazard. Mater. Vol. 176, pp. 76-84.
Siripong, S. and Rittmann, B. E., (2007). Diversity study of nitrifying bacteria in full-scale municipal wastewater treatment plants. Wat. Res., Vol. 41, pp. 1110-1120.
S. Lübbecke, A. Vogelpohl, W. Dewjanin., (1995). Wastewater treatment in a biological high-performance system with high biomass concentration. Water Res. Vol. 29, pp. 793-802.
Semmens, M. J., Dahm, K., Shanahan, J., Christianson, A., (2003). COD and nitrogen removal by biofilms growing on gas permeable membranes. Water Research, Vol. 37(18), pp. 4343-4350.
Sanz, J.L., Kochling, T., (2007). Molecular biology techniques used in wastewater treatment: an overview. Process. Biochem. Vol. 42 (2), pp. 119-133.
Skrifvars, B. J., Hupa, M., Backman, R. and Hiltunen, M., (1994). Sintering mechanisms of FBC ashes, Fuel, Vol. 73(2), pp. 171-176.
Tanwar, P. K., Nandy, T. P., Ukey, P. Ls., Manekar, P. V., (2008). Correlating on-line monitoring parameters, pH, DO and ORP with nutrient removal in an intermittent
cyclic process bioreactor system. Bioresource Technology, Vol. 99, pp. 7630-7635.
Terada, A., Kaku, S., Matsumoto, S. and Tsuneda, S., (2007). Rapid autohydrogenotrophic denitrification by a membrane biofilm reactor equipped with a fibrous support around a gas-permeable membrane. Biochem. Eng. J., Vol. 31, pp. 84-91.
T. Ivanova, and L. Malone, (1999). Comparison Of A Two-Stage Group-Screening Design to a Standard 2k-p Design For a Whole-Line Semiconductor Manufacturing Simulation Model. Proceedings of the 1999 Winter Simulation Conference, pp 640-646.
Upadhyaya, G. S., (2001). Some issues in sintering science and technology. Materials Chemistry and Physics, Vol. 67(1-3), pp. 1-5.
Wang, X., Jin, Y., Wang Z., Nie, Y., Huang, Q., Wang, Q., (2009). Development of lightweight aggregate from dry sewage sludge and coal ash. Waste Management, Vol. 29, pp. 1330-1335.
Wang, R. C., Wen, X. H., Qian, Y., (2005). Influence of carrier concentration on the performance and microbial characteristics of a suspended carrier biofilm reactor. Process Biochemistry, Vol. 40, pp. 2992-3001.
Weissenbacher, N., Loderer, C., Lenz, K., Mahnik, S. N., Wett, B. and Fuerhacker, M., (2007). NOx monitoring of a simultaneous nitrifying-denitrifying (SND) activated sludge plant at different oxidation reduction potentials. Wat. Res, Vol. 41, pp. 397-405.
Wijffels, R. H., Tramper, J., (1995). Nitrification by immobilized cells. Enzyme and Microbial Technology, review, Vol.17(6), pp. 482-492.
Wojciechowska E., (2005). Application of microwaves for sewage sludge conditioning. Wat. Res., Vol. 39, pp. 4749-4754.
Won, S.G., Ra, C. S., (2011). Biological nitrogen removal with a real-time control strategy using moving slope changes of pH (mV)- and ORP-time profiles. Water research, Vol. 45, pp. 171-178.

Wu, C. H. and Jin, Y. X., (2011). Performance of Nitrogen and Phosphorus Removal of Municipal Wastewater in Sequencing Batch Biofilm Reactor. Energy procedia, Vol. 11, pp. 4453-4457.
Yoshie, S., Noda, N., Miyano, T., Tsuneda, S., Hirata, A., Inamori, Y., (2001). Microbial community analysis in the denitrification process of saline-wastewater by denaturing gradient gel electrophoresis of PCR-amplified 16S rDNA and the cultivation method. Journal of Bioscience and Bioengineering, Vol. 92, pp. 346-353.
Zeng, R. J., Lemaire, R. M., Yuan, Z. G., Keller, J., (2003). Simultaneous Nitrification, Denitrification, and Phosphorus Removal in a Lab-Scale Sequencing Batch Reactor. Published online 24 June 2003 in Wiley InterScience. DOI: 10.1002/bit.10744.
Zhang, L.Q., Wei, C.H., Zhang, K.F., Zhang, C.S., Fang, Q., Li, S.G., (2009). Effects of temperature on simultaneous nitrification and denitrification via nitrite in a sequencing batch biofilm reactor. Bioprocess Biosyst. Eng. Vol. 32, pp. 175-182.
Zhu, G. B., Peng, Y. Z., Wu, S. Y., Wang, S. Y., Xu, S. W., (2007). Simultaneous nitrification and denitrification in step feeding biological nitrogen removal process. Journal Environmental Science. Vol. 19, pp. 1043-1048.
NIEA (2004), “一般廢棄物回收清除處理辦法”。
NIEA R201.14C, (2004) “事業廢棄物毒性特性溶出程序”。
NIEA R205.01C, (2004) “廢棄物中灰份、可燃份測定方法”。
NIEA W415.52B, (2005) “水中陰離子檢測方法-離子層析法”。
中國國家標準CNS 1010 R3032,“水硬性水泥墁料抗壓強度檢驗法”。
中國國家標準CNS-487, “細粒料比重及吸水率試驗法”。
林東燦 (2006),污泥類廢棄物取代部分水泥原料燒製環保水泥之可行性研究。國立中央大學環境工程研究所碩士論文。
曹明浙 (2003),同槽硝化脫硝反應去除廢水氨氮之研究,國立台灣大學環境工程學研究所碩士論文。
彭明琛(2002),養殖環境中氨氧化菌之研究,國立中山大學海洋資源研究所碩士論文。
楊志政 (2001),下水污泥灰細度變化與矽氧晶相對燒成骨材輕質化之影響,國立中央大學碩士論文。
張毓舜(1999),下水污泥焚化灰渣燒結特性之研究,國立中央大學環境工程研究所碩士論文。
游勝傑 (2002),併同生物膜與活性污泥程序之硝化及脫硝攝磷特性研究,國立中央大學境工程研究所碩士論文。
洪珮珊 (2008), 重金屬銅鎘對活性污泥 Bardenpho 程序硝化菌族群抑制效應之研究,朝陽科技大學環境工程與管理研究所碩士論文。
陳逸凡(2006),下水污泥堆肥施用過程有機物對重金屬與營養鹽移動性影響之研究。逢甲大學環境工程與科學所碩士論文。
蔡呈祥 (2007),水肥納入都市污水處理廠處理之影響及因應探討-以台中市福田水資源回收中心為例。國立中興大學環境工程研究所碩士論文。
李莉鈴(2004),建立並模擬同時硝化脫硝之反應機制,東海大學環境科學與工程所碩士論文。
鍾承佑 (2007),利用回收廢棄活性污泥製造生物載體以增進循序批分式生物膜反應槽處理營養鹽功能。東海大學環境科學與工程所碩士論文。
蘇汶芳(2008),以廢棄活性污泥製成孔隙生物載體進行同時硝化脫硝技術之探討,東海大學環境科學與工程所碩士論文。
黃瀚賢(2010),利用實驗設計方法回收廢棄污泥製成多孔營養鹽生物載體力用於同時硝化脫硝反應,東海大學環境科學與工程所碩士論文。

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊