|  | 
Bahl, L., Brown, P., Souza, P. de, & Mercer, R. (1986). Maximum mutual informationestimation of hidden Markov model parameters for speech recognition. In ICASSP
 ’86. IEEE International Conference on Acoustics, Speech, and Signal Processing
 (Vol. 11, pp. 49–52). https://doi.org/10.1109/ICASSP.1986.1169179
 Breiman, L. (1996). Bagging predictors. Machine Learning, 24(2), 123–140.
 Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5–32.
 Breiman, L., Friedman, J., Stone, C. J., & Olshen, R. A. (1984). Classification and
 regression trees. CRC press.
 Chen, T., & Guestrin, C. (2016). XGBoost: A Scalable Tree Boosting System. In
 Proceedings of the 22Nd ACM SIGKDD International Conference on Knowledge
 Discovery and Data Mining (pp. 785–794). New York, NY, USA: ACM.
 https://doi.org/10.1145/2939672.2939785
 Cook, J. E., & Wolf, A. L. (1995). Automating process discovery through event-data
 analysis. In Software Engineering, 1995. ICSE 1995. 17th International Conference
 on (pp. 73–73). IEEE. Retrieved from
 http://ieeexplore.ieee.org/abstract/document/5071093/
 Cortes, C., & Vapnik, V. (1995). Support vector machine. Machine Learning, 20(3),
 273–297.
 Deng, H. (2014). Interpreting tree ensembles with intrees. arXiv Preprint
 arXiv:1408.5456.
 Dumas, M., Van der Aalst, W. M., & Ter Hofstede, A. H. (2005). Process-aware
 information systems: bridging people and software through process technology.
 John Wiley & Sons.
 Forney, G. D. (1973). The viterbi algorithm. Proceedings of the IEEE, 61(3), 268–278.
 ForsythD, P., & others. (2002). ComputerVision: AModernApproachPrenticeHall.
 UpperSaddle River: PrenticeHall.
 Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. MIT press.
 Hosmer Jr, D. W., Lemeshow, S., & Sturdivant, R. X. (2013). Applied logistic
 regression (Vol. 398). John Wiley & Sons.
 James, G., Witten, D., Hastie, T., & Tibshirani, R. (2013). An introduction to statistical learning: with applications in R (Vol. 103). Springer Science & Business Media.
 Kang, Y., & Zadorozhny, V. (2016). Process monitoring using maximum sequence
 divergence. Knowledge and Information Systems, 48(1), 81–109.
 https://doi.org/10.1007/s10115-015-0858-z
 Kuhn, M., & Johnson, K. (2013). Applied predictive modeling (Vol. 26). Springer.
 Lee, J.-M. (1994). Cultivation of grafted vegetables I. Current status, grafting methods,
 and benefits. HortScience, 29(4), 235–239.
 Lichman, M. (2013). UCI Machine Learning Repository. University of California,
 Irvine, School of Information and Computer Sciences. Retrieved from
 http://archive.ics.uci.edu/ml
 Phung, L. T. K., Chau, V. T. N., & Phung, N. H. (2015). Extracting Rule RF in
 Educational Data Classification: From a Random Forest to Interpretable Refined
 Rules. In Advanced Computing and Applications (ACOMP), 2015 International
 Conference on (pp. 20–27). IEEE.
 Process mining: a research agenda. (n.d.). Retrieved May 21, 2017, from
 http://www.sciencedirect.com/science/article/pii/S0166361503001945
 Quinlan, J. R. (1986). Induction of decision trees. Machine Learning, 1(1), 81–106.
 Quinlan, J. R. (2014). C4. 5: programs for machine learning. Elsevier.
 Rabiner, L. R. (1989). A tutorial on hidden Markov models and selected applications in
 speech recognition. Proceedings of the IEEE, 77(2), 257–286.
 https://doi.org/10.1109/5.18626
 Safavian, S. R., & Landgrebe, D. (1991). A survey of decision tree classifier
 methodology. IEEE Transactions on Systems, Man, and Cybernetics, 21(3), 660–
 674.
 Silverman, B. W. (1986). Density estimation for statistics and data analysis (Vol. 26).
 CRC press.
 Tu, Z. (2005). Probabilistic boosting-tree: learning discriminative models for
 classification, recognition, and clustering. In Tenth IEEE International Conference
 on Computer Vision (ICCV’05) Volume 1 (Vol. 2, p. 1589–1596 Vol. 2).
 https://doi.org/10.1109/ICCV.2005.194
 van de Aalst, W. (2010). Process discovery: capturing the invisible. IEEE
 Computational Intelligence Magazine, 5(1), 28–41.
 Van der Aalst, W. M., & Weijters, A. (2004). Process mining: a research agenda.
 Computers in Industry, 53(3), 231–244.
 Webb, G. I. (1996). Further experimental evidence against the utility of Occam’s razor.
 Journal of Artificial Intelligence Research, 4, 397–417.
 Webb, G. I. (1997). Decision tree grafting. In IJCAI (2) (pp. 846–851).
 Webb, G. I. (1999). Decision tree grafting from the all-tests-but-one partition. In IJCAI
 (Vol. 2, pp. 702–707).
 Yu, S.-Z. (2010). Hidden semi-Markov models. Artificial Intelligence, 174(2), 215–243.
 https://doi.org/10.1016/j.artint.2009.11.011
 
 |