跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.81) 您好!臺灣時間:2025/10/04 18:23
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:王依婷
研究生(外文):Yi-ting Wang
論文名稱:投資人之交易偏好分析
論文名稱(外文):The Analysis of Trading Preferences among Various Types of Investors
指導教授:林岳喬林岳喬引用關係
指導教授(外文):Yuah-chiao Lin
學位類別:碩士
校院名稱:國立中正大學
系所名稱:會計與資訊科技所
學門:商業及管理學門
學類:會計學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:英文
論文頁數:88
中文關鍵詞:股票特性交易偏好投資人
外文關鍵詞:stock characteristicsinvestorstrading preferences
相關次數:
  • 被引用被引用:2
  • 點閱點閱:840
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究欲探討在台灣證券交易市場上,不同類型之投資人是否會有其特定之股票特性之偏好。透過股票交易紀錄之分析,本文採用了統計回歸與資料採礦兩種方法以探討在不同構面下,例如性別、財富水準或交易頻率之不同,投資人是否會有其偏好之股票特性,例如股票之每股盈餘、股利率、市價淨值比及每股價格。實證結果發現一般而言,台灣投資人較偏好上市期間較短、高系統風險、低股利率、每股盈餘較高、本益比低以及高市值之股票。然而,女性投資人、北部投資人與財富水準低、交易頻率低及交易經驗少的投資人皆較喜愛交易高風險、波動率高、未來成長潛力高之股票。
This thesis investigates whether there are specific trading preferences for stock characteristics among various types of investors in Taiwan stock markets. By examining the stock trading, we apply the methods of statistical regression and data mining to investigate whether the investors with different characteristics, such as gender, wealth levels, and trading frequency show any preferences with respect to different stock characteristics, such as EPS, dividend yield, market-to-book, and prices. The results show that in general, investors in Taiwan show greater trading preferences for newly listed stocks and stocks with higher beta, lower dividend yield, greater EPS, lower prices, higher P/E ratios, and larger sizes. However, female investors, less wealthy investors, investors living in the North region, investors with less trading frequency, and less experienced investors are more likely to trade stocks that are more risky and have more volatility and growth potential in the future.
Index
致謝辭 i
Abstract ii
摘要 iii
1. Introduction 1
1.1. Research Background 1
1.2. Research Objectives 3
2. Literature Review 6
2.1. Investor Preferences for Stock Characteristics 6
2.1.1. Domestic Institutional Investors 6
2.1.2. Foreign Institutional Investors 7
2.1.3. Comparison of Individual vs. Institutional Investors 9
2.2. Analysis of Investor Characteristics Affecting Security Portfolio Preference 11
2.2.1. Gender 11
2.2.2. Wealth 12
2.2.3. Local Preference 13
2.2.4. Experience 14
2.3. Data Mining 15
2.3.1. Data Mining: A brief explanation 15
2.3.2. Models of Data Mining 16
2.3.3. Methods of Clustering 17
2.3.3.1. The Hierarchical Clustering 17
2.3.3.2. The Nonhierarchical Clustering 18
2.3.4. Self Organizing Map 19
2.3.5. The Decision Tree 20
2.4. Related Work 21
2.4.1. Application in Forecasting Stock Market Returns 22
2.4.2. Application in Knowledge Discovery in Financial Investments 22
2.5. Summary 23
3. Research Methodology 25
3.1. Data 25
3.2. The Measure of Trading Preferences 26
3.3. Stock Characteristics 28
3.4. Investor Characteristics 31
3.4.1. Gender 31
3.4.2. Wealth 31
3.4.3. Region 33
3.4.4. Trading Frequency 33
3.4.5. Trading Experience 34
3.5. Regression Model 35
3.6. Data Mining 36
3.6.1. Self Organizing Map 36
3.6.1.1. Data Mining Tool 36
3.6.1.2. Data Mining Process 36
3.6.2. The Decision Tree 37
3.7. The Diagram of Process 38
4. Empirical Results and Analysis from Statistical Regressions 39
4.1. Trading Amount vs. Investor Characteristics 39
4.2. Trading Amount vs. Stock Characteristics 40
4.3. Stock Preferences of Various Investors 41
4.3.1. Institutional Investors vs. Individual Investors 41
4.3.2. Gender 44
4.3.3. Wealth Level 44
4.3.4. Region 46
4.3.5. Trading Frequency 47
4.3.6. Trading Experience 48
4.4. Summary 49
5. Empirical Results and Analysis from Data Mining 51
5.1. Self Organizing Map 51
5.2. Decision Tree 51
5.3. Summary 54
6. Conclusions and Future Work 57
6.1. Trading Volumes vs. Investor Characteristics 57
6.2. Trading Volume vs. Stock Characteristics 58
6.3. Trading Preferences for Stock Characteristics among Various Investors: Results from Statistical Regression 59
6.4. Trading Preferences for Stock Characteristics among Various Investors: Results from Data Mining 64
6.5. Comparison of Regression and Data Mining 66
6.6. Future Work 67
Appendix 69
Reference 85
Reference

Aggarwal, R., L. Klapper, and P. D. Wysocki. 2005. “Portfolio Preferences of Foreign Institutional Investors.” Journal of Banking & Finance 29: 2919-2946.
Apte, C., B. Liu, P. D. Pednault, and P. Smyth. 2002. “Business Applications of Data Mining.” Communications of the ACM 45 (8).
Balakrishnan, P. V., M. C. Cooper, V. S. Jacob, and P. A. Lewis. 1994. “A Study of the Classification Capabilities of Neural Networks Using Unsupervised Learning: A Comparison with K-means Clustering.” Psychometrika 59 (4): 509-525.
Barber, B. M., and T. Odean. 2001. “Boys Will Be Boys: Gender, Overconfidence, and Common Stock Investment.” The Quarterly Journal of Economics.
Barber, B. M., and T. Odean. 2004. “All That Glitters: The Effect of Attention and News on the Buying Behavior of Individual and Institutional Investors.” Working paper, University of California.
Bigus, J. P. 1996. Data Mining with Neural Networks, New York. NY: McGram-Hill Company.
Chen, A. S., M. T. Leung, and H. Daouk. 2003. “Application of Neural Networks to An Emerging Financial Market: Forecasting and Trading the Taiwan Stock Index.” Computers & Operations Research 30: 901-923.
Chen, G. M., K. A. Kim, J. R. Nofsinger, and O. M. Rui. 2004. “Behavior and Performance of Emerging Market Investors: Evidence from China.” Working paper, Washington State University.
Chen, S. K., P. Mangiameli, and D. West. 1995. “The Comparative Ability of Self-organizing Neural Networks to Define Cluster Structure.” Omega International Journal of Management Science 23 (3): 271-279.
Cohn, R. A., W. G. Lewellen, R. C. Lease, and G. G. Schlarbaum. 1975. “Individual Investor Risk Aversion and Investment Portfolio Composition.” The Journal of Finance 30 (2): 605-620.
Coval, J. D., and T. J. Moskowitz. 2001. “The Geography of Investment: Informed Trading and Asset Prices.” The Journal of Political Economy 109 (4).
Covrig, V., S. T. Lau, and L. Ng. 2006. “Do Domestic and Foreign Fund Managers Have Similar Preferences for Stock Characteristics? A Cross-Country Analysis.” Journal of International Business Studies 37: 407-429.
Dahlquist, M., and G. Robertsson. 2001. “Direct Foreign Ownership, Institutional Investors, and Firm Characteristics.” The Journal Financial Economics 59: 413-440.
Dale, M. B., P. E. R. Dale, and P. Tan. 2007. “Supervised Clustering using Decision Trees and Decision Graphs: An Ecological Comparison.” Ecological Modelling 204: 70-78.
Deboeck, G. J. 1998. “Financial Applications of Self-Organizing Maps.” Neural Network World 8 (2): 213-241.
Dwyer, P. D., J. H. Gilkeson, and J. A. List. 2002. “Gender Differences in Revealed Risk Taking: Evidence from Mutual Fund Investors.” Economics Letters 76: 151-158.
Eklund, T., B. Back, H. Vanharanta, and A. Visa. 2002. “Assessing the Feasibility of Self-Organizing Maps for Data Mining Financial Information.” ECIS.
Elkinawy, S. 2005. “Mutual Fund Preferences for Latin American Equities Surrounding Financial Crises.” Emerging Markets Review 6: 211-237.
Enke, D., and S. Thawornwong. 2005. “The Use of Data Mining and Neural Networks for Forecasting Stock Market Returns.” Expert Systems with Applications 29: 927-940.
Falkenstein, E. G. 1996. “Preferences for Stock Characteristics as Revealed by Mutual Fund Portfolio Holdings.” The Journal of Finance 51 (1): 111-135.
Gafiychuk, V. V., B. Y. Datsko, and J. Izmaylova. 2004. “Analysis of Data Clusters Obtained by Self-organizing Methods.” Physica A 341: 547-555.
Godin, N., S. Huguet, and R. Gaertner. 2005. “Integration of the Kohonen''s Self-organising Map and K-means Algorithm for the Segmentation of the AE Data Collected during Tensile Tests on Cross-ply Composites.” NDT&E International 38: 299-309.
Gompers, P. A., and A. Metrick. 2001. “Institutional Investors and Equity Prices.” The Quarterly Journal of Economics.
Grinblatt, M., and M. Keloharju. 2001. “What Makes Investors Trade?” The Journal of Finance LVI (2).
Helsen, K., and P. A. Green. 1991. “Computational Study of Replicated Clustering with an Application to Market Segmentation.” Decision Science 22 (5): 1124-1141.
Hertz, J., A. Krogh, and R. G. Palmer. 1991. Introduction to the Theory of Neural Computation. Reading MA: Addison-Wesley Publishing Company.
Holsheimer, M., and A. Siebes. 1994. “Data Mining: The Search for Knowledge in Databases.” Technical Report, CS-R9406, CWI.
Huberman, G. 2001. “Familiarity Breeds Investment.” The Review of Financial Studies 14 (3): 659-680.
Ivković, Z., and S. Weisbenner. 2005. “Local Does as Local Is: Information Content of the Geography of Individual Investors’ Common Stock Investments.” The Journal of Finance LX (1).
Jianakoplos, N. A., and A. Bernasek. 1998. “Are Women More Risk Averse?” Economic Inquiry: 620-630.
Jones, J. K. 2001. “The Role of Data Mining Technology in the Identification of Signals of Possible Adverse Drug Reactions: Value and Limitations.” Current Therapeutic Research 62 (9).
Kang, J. K., and R. M. Stulz. 1997. “Why Is There a Home Bias? An Analysis of Foreign Portfolio Equity Ownership in Japan.” Journal of Financial Economics 46 (26): 3-28.
Kohonen, T. 1987. “Adaptive, Associative, and Self-organizing Functions in Neural Computing.” Applied Optics 26 (23).
Kohonen, T. 1998. “The Self-organizing Map.” Neurocomputing 21: 1-6.
Kuo, R. J., L. M. Ho, and C. M. Hu. 2002. “Integration of Self-organizing Feature Map and K-means Algorithm for Market Segmentation.” Computer & Operations Research 29: 1475-1493.
Kuo, S. C., S. T. Li, Y. C. Cheng, and M. H. Ho. 2004. “Knowledge Discovery with SOM Networks in Financial Investment Strategy.” Hybrid Intelligent Systems.
Lee, Sungjoo, S. Lee, and Y. Park. 2007. “A Prediction Model for Success of Services in E-commerce Using Decision Tree: E-customer’s Attitude towards Online Services.” Expert Systems with Applications 33:572-581.
Li, S. T., and S. C. Kuo. 2006. “Knowledge Discovery in Financial Investment for Forecasting and Trading Strategy through Wavelet-Based SOM Networks.” Expert Systems with Applications.
Liao, S. H., and C. H. Wen. 2007. “Artificial Neural Networks Classification and Clustering of Methodologies and Applications – Literature Analysis from 1995 to 2005.” Expert Systems with Applications 32: 1-11.
Mangiameli, P., S. K. Chen, and D. West. 1995. “A Comparison of SOM Neural Network and Hierarchical Clustering Methods.” European Journal of Operational Research 93: 402-417.
Merton, R. C. 1987. “A Simple Model of Capital Market Equilibrium with Incomplete Information.” The Journal of Finance: 483-510.
Mingoti, S. A., and J. O. Lima. 2006. “Comparing SOM Neural Network with Fuzzy C-means, K-means and Traditional Hierarchical Clustering Algorithms.” European Journal of Operational Research 174: 1742-1759.
Ng, L., and F. Wu. 2006. “Revealed Stock Preferences of Individual Investors: Evidence from Chinese Equity Markets.” Pacific-Basin Finance Journal 14: 175-192.
Peress, J. 2004. “Wealth, Information Acquisition, and Portfolio Choice.” The Review of Financial Studies 17 (3).
Proctor, R. A. 1992. “Marketing Decision Support System: A Role for Neural Networking.” Marketing Intelligence and Planning 10 (1): 21-26.
Punj, G. and D. W. Steward. 1983. “Cluster Analysis in Marketing Research: Review and Suggestions for Applications.” Journal of Marketing Research 20: 134-148.
Vijaya, P. A., M. N. Murty, and D. K. Subramanian. 2006. “Efficient Bottom-Up Hybrid Hierarchical Clustering Techniques for Protein Sequence Classification.” Pattern Recognition 39: 2344-2355.
Wong, B. K., and Y. Selvi. 1998. “Neural Network Applications in Finance: A Review and Analysis of Literature (1990–1996).” Information & Management 34: 129-139.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top