跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.42) 您好!臺灣時間:2025/10/01 11:20
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蘇楠清
研究生(外文):Nan-Ching Su
論文名稱:俱全反射之微反射鏡片製作
論文名稱(外文):Fabricaton of the micro-reflector with total reflection
指導教授:林清彬林清彬引用關係
指導教授(外文):Ching-Bin Lin
學位類別:碩士
校院名稱:淡江大學
系所名稱:機械與機電工程學系碩士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:94
語文別:中文
論文頁數:67
中文關鍵詞:聚二甲基矽氧烷紫外光硬化電鑄反射率
外文關鍵詞:PolydimethylsiloxaneUV curableelectroformingreflection
相關次數:
  • 被引用被引用:0
  • 點閱點閱:190
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究係以黃光微影製程並使用氫氧化鉀蝕刻(100)晶面的矽作為非等向性溼式蝕刻之製程,製備俱{111}面與(100)面夾54.74度的倒四角錐體矽模仁;並利用聚二甲基矽氧烷(PDMS)翻印矽模仁,由於PDMS之易拉伸性質而將PDMS施予單軸向拉伸以改變結構尺寸上及{111}面與(100)面夾角角度的改變;利用紫外光硬化技術將拉伸的PDMS之結構轉印,並使用電鑄技術將俱有倒四角錐體結構的UV膠翻印以當作高分子熱壓的模仁;最後將熱壓的高分子做光學檢測,並得到光的繞射圖形。
In this thesis, the Si mold containing inverted pyramid patterns with 54.74 degree between {111} planes and (100) plane was manufactured by photolithography process and Si (100) was prepared with KOH etching process for the anisotropic wet etching process. The polydimethylsiloxane was used to reprinted the structure of the si mold. Because polydimethylsiloxane was elongated easily, polydimethylsiloxane was forced to elongate single-axially to change the degree of the angle between {111} planes and (100) plane and the dimension of the structure. By using UV curing technology, the structure of the elongated PDMS would be reprinted. And then the electroforming technology was used to reprinted the UV curing agent with the structure of the inverted pyramid patterns for being the mold of polymer hot embossing. Finally, polymer was used for optical test and get diffraction pattern of the photo.
總目錄
總目錄…………………………………………………………………I
圖目錄…………………………………………………………………III
表目錄…………………………………………………………………VI
中文摘要………………………………………………………………VII
英文摘要………………………………………………………… VIII
壹、導論………………………………………………………………1
1-1 前言……………………………………………………………1
1-2 文獻回顧………………………………………………………4
1-2-1濕蝕刻原理……………………………………………4
1-2-2 軟微影…………………………………8
1-2-3 電鑄原理………………………………………………9
1-3研究範疇………………………………………………………13
貳、實驗設計……………………………………………………22
2-1實驗材料………………………………………………………22
2-2實驗設備………………………………………………………22
2-3實驗步驟………………………………………………………23
2-3-1矽模仁製作……………………………………………23
2-3-2 PDMS 翻印矽模仁……………………………………25
2-3-3 PDMS 拉伸……………………………………………26
2-3-4 UV膠轉印……………………………………………26
2-3-5電鑄模仁………………………………………………27
2-3-6雙軸向拉伸……………………………………………29
2-3-6熱壓成型………………………………………………29
2-3-7光學測試………………………………………………29
參、結果與討論…………………………………………37
3-1 矽晶圓之金字塔形模仁製作………………………………37
3-1-1 矽晶圓蝕刻與倒四角錐形成機制……………………37
3-1-2 矽晶圓蝕刻後之金字塔缺陷形成…………………38
3-2 PDMS翻印矽模仁結構及UV膠翻印………………………39
3-3 拉伸試片形狀之PDMS拉伸與UV硬化及電鑄翻印………41
肆、結論……………………………………………………………60
伍、參考文獻………………………………………………………61





圖目錄
圖1-1 熱壓成型與射出成型之示意圖……………………………….16
圖1-2 LIGA製程技術示意圖…………………………………………16
圖1-3 等向性濕蝕刻之示意圖………………………………...….…..17
圖1-4 矽的晶格結構之示意圖………………………………………..17
圖1-5 常用立方晶體面之米勒指標……………..……………………18
圖1-6 濕蝕刻反應機制…………………..……………………………18
圖1-7 PDMS當模仁並利用紫外光硬化成型技術之流程…..................19
圖1-8 電鑄原理與基本架構..................................................................20
圖1-9 不同高深寬比之結構,電鑄時模穴內的質傳定性模式...........20
圖1-10 一維擴散位移之單位流量的變化............................................21
圖1-11 改善電鑄層均勻性之裝置........................................................21
圖2-1 光罩30×30μm的正方形且線寬為2μm的間距之陣列............30
圖2-2 未蝕刻之矽晶片..........................................................................30
圖2-3 藉由OM得知是否蝕刻完畢........................................................31
圖2-4 矽模仁製作之示意圖.................................................................32
圖2-5 PDMS翻印矽模結構之機構示意圖.............................................33
圖2-6 PDMS拉伸機構示意圖:(a)數位式測微頭;(b)滑塊;(c)彈簧;(d)圓棒;(e)頂銷置入處...........................................................34
圖2-7 UV膠轉印之流程示意圖.............................................................35
圖2-8 雷射光路徑俯視圖......................................................................36
圖3-1 俱倒四角錐體結構之矽模仁之SEM圖......................................43
圖3-2 微小金字塔結構缺陷之四面體與八面體之SEM圖..................44
圖3-3 氫氣導致微小金字塔缺陷的機制示意圖..................................45
圖3-4 氫氣泡與矽晶圓之界面關係(a)斥水(b)親水..........................45
圖3-5 PDMS翻印矽模仁結構之SEM圖.................................................46
圖3-6 UV膠翻印未拉伸的PDMS結構之SEM圖.................................47
圖3-7 UV過度曝光未拉伸的PDMS之PDMS SEM圖(曝光時間30秒) ...48
圖3-8 UV過度曝光拉伸的PDMS之UV膠 SEM圖(曝光時間30秒) .... 49
圖3-9 UV曝光拉伸的PDMS之UV膠 SEM圖(UV膠試片中間) .............50
圖3-10 UV曝光拉伸的PDMS之UV膠 SEM圖(UV膠試片邊界) ............51
圖3-11 試片拉伸變化示意圖;上圖為PDMS拉伸前的示意圖,下圖為PDMS拉伸固定後的示意圖.................................................52
圖3-12 UV曝光拉伸的PDMS之UV膠 SEM圖.......................................53
圖3-13經ㄧ次拉伸之電鑄模仁 OM圖...................................................54
圖3-14 二次拉伸之UV SEM圖................................................................55
圖3-15 經二次拉伸之電鑄模仁 OM圖.................................................56
圖3-16 經二次拉伸且電鑄之熱壓的高分子 SEM圖...........................57
圖3-17 Si模熱壓的高分子之繞射數位照…………………...............58
圖3-18 二次拉伸後鎳模熱壓的高分子之繞射數位照........................59

表目錄
表1-1 MEMS領域之微製造技術分類表.................................................15
1.M. Madou,“Fundamentals of Microfabrication”, New York, CRC Press,1997.
2.Julian W. Garder, “Microsensors Principles and Applications”, Wiley.
3.邱燦賓,施敏,“電子束微影技術.” 科學發展月刊 28 (2000) pp.423-434
4.楊啟榮,“微機電LIGA製程技術簡介.” 科儀新知 19 (1998) pp.4-17
5.吳清祈、鍾震桂,“微機電系統技術簡介.”科儀新知 18 (1996) pp.26-40
6.楊啟榮,”微機電製程領域之精密電鑄技術.”
7.周俊宏,微細加工技術在金屬相關產業之應用,出版商:ITIS
8.梁靜秋、姚勁松, “LIGA技術基礎研究”, 光學精密工程, 8卷1期,pp.38-41.
9.楊錫杭編著,“微機械加工概論”, 初版,全華,2002
10.A. Schmidt, W. Ehrfeld, H. Lehr, L. Müller, F. Reuther, M. Schmidt, & Th. Zetterer,“Aligned Double Exposure in Deep X-ray Lithography.” Microelectronic Engineering 30 (1996) pp.235-238
11.S.Achenbach, J. Mohr, & F. J. Pantenburg, “Application of Scanning Probe Microscopy for the determination of the structural accuracy of high aspect ratio microstructures.”Microelectronic Engineering 53 (2000) pp.637-640.
12.W. Ehrefld, & H. Lehr, “Deep X-ray Lithography for the Production of Three-Dimensional Microstructures From Metals, Polymers and Ceramics.” Radiation Physics and Chemistry 45 (1995)pp.349-365
13.S. Ballandras, S. Basrour, L. Robert, S. Megtert, P. Blind, M. Rouillay, P.Bernéde, & d W. Daniau, “Microgrippers fabricated by the LIGA technique .” Sensors and Actuators A 58 (1997) pp.265-272
14.Schwartz & H. R. Robbins, “Chemical etching of silicon-IV. Etching technology.” Journal of the Electrochemical Society 123 (1976) pp.1903-1909
15.A. F. Bogenschutz, W. Krusemark, K.H. Locherer, & W. ussinger, “Activation energies in the chemical etching if semiconductors in HNO3-HF-CH3COOH.” Journal of the Electrochemical Society Solid Stat 114 (1997) pp. 970-973
16.H.R. Robbins & B. Schwartz, “Chemical etching of silicon-I. The system HF, HNO3, H2O, and HC2C3O2.” Journal of the Electrochemical Society 106 (1959) pp.505-508
17.H.R. Robbins & B. Schwartz, “Chemical etching of silicon-II. The system HF, HNO3, H2O, and HC2C3O2.” Journal of the Electrochemical Society 107 (1960) pp.108-111
18.B. Schwartz & H. R. Robbins, “Chemical etching of silicon-III. A temperature study in the acid system.” Journal of the Electrochemical Society 108 (1961) pp.365-372
19.A. F. Bogensch¨utz, W. Krusemark, K.H. L¨ocherer, & W. Mussinger, “Activation energies in the chemical etching of semiconductors in HNO3-HF-CH3COOH.” Journal of the Electrochemical Society : Solid State 114 (1967) pp.970–973
20.M. Madou, “Fundamentals of Microfabrication,” New York, CRC Press,2002
21.M. Shikida, T. Masuda, D. Uchikawa, & K. Sato, “Surface roughness of single-crystal silicon etched by TMAH solution.” Sensors and Actuators A: Physical 90 (2001) pp.223–231
22.A. Merlos, M. Acero, M.H. Bao, J. Bausells & J. Esteve,” TMAH/IPA anisotropic etching characteristics.” Sensors and Actuators A: Physical 37-38 (1993 )pp.737–743.
23.O.J. Glembocki, E.D. Palik, G.R. de Guel & D.L. Kendall, “Hydration model for the molarity dependence of the etch rate of Si in aqueous alkali hydrosides.” Journal of the Electrochemical Society 138 (1991) pp.1055–1063
24.Theo Baum & David J Schiffrin, ”AFM study of surface finish improvement by ultrasound in the anisotropic etching of Si (100)in KOH for micromachining app塗lications.” Journal of Micromechanics and Microengineering 7 (1997) pp.338-342
25.http://ezphysics.nchu.edu.tw/prophys/ael/lecturenote/2_1.pdf
26.K.E.Petersen, 1982,” Silicon as a mechanical material ”, Proc. IEEE, vol.70,pp.420.
27.H.Seidel, L.Gsepregi, A.Henberger & H.Baumgartel,”
Anisotropic etching of crystalline silicon in alkaline sduties.” ibid 137 (1990) pp.3612-
28.D. R. Ciarlo, “Corner compensation structures for (110) oriented silicon”, IEEE Micro Robots and Teleoperators Workshop, pp. 6/1-4, (1987).
29.J.S. Judge, “Etching for Pattern Definition.” PV 76-3, Electrochemical Society Inc., Pennington, 1976.
30.W. Lang, “Silicon microstructuring technology.” Materials science and engineering R17 (1996) pp.1–55
31.I. Zubel & M. Kramkowska, “The effect of isopropyl alcohol on etching rate and roughness of (1 0 0) Si surface etched in KOH and TMAH solutions.” Sensors and Actuators A: Physical 93 (2001) pp.138–147
32.K.R. Williams & R.S. Muller, “Etch rate for micromachining processes.” Journal of the Electrochemical Society 137 (1996) pp.3612–3632
33.Z. Yang, “Ultra-fast anisotropic silicon etching with resulting mirror surfaces in ammonia solution.” Transducers 01 (2001) pp.608–611
34.P. Krause & E. Obermeier, “Etch rate and surface roughness of deep narrow U-grooves in (1 1 0)-oriented silicon.” journal of Micromechanics and Microengineering 5 (1995) pp.112–114
35.J.B. Price, in: H.R. Hoff, P.R. Burgess (Eds.), Semiconductor Silicon, The Electrochemical Society Softbound Proceedings Series, Princeton, New Jersey, 1973, p.339
36.I. Zubel, “Silicon anisotropic etching in alkaline solutions III: on the possibility of spatial structures forming in the course of Si(1 0 0) anisotropic etching in KOH and KOH + IPA solutions.” Sensors and Actuators A: Physical 84 (2000) pp.116–125
37.I. Zubel, I. Barycka, K. Kotowska & M. Kramkowska, “Silicon anisotropic etching in alkaline solutions IV: the effect of organic and inorganic agents on silicon anisotropic etching process.” Sensors and Actuators A: Physical 87 (2001) pp.163–171
38.Irena Zubel & Malgorzata Kramkowska, “The effect of isopropyl alcohol on etching rate and roughness of (100) Si surface etched in KOH and TMAH solutions.” Sensors and Actuators A: Physical 93 (2001) pp.138-137
39.E.D. Palik, H.F. Gray & P.B. Klein, “A Raman study of etching silicon in aqueous KOH.” Journal of the Electrochemical Society 130 (1983) pp.956–959
40.I. Zubel & M. Kramkowska, “The effect of alcohol additives on etching characteristics in KOH solutions.” Sensors and Actuators A: Physical 101 (2002) pp.255–261
41.Chii-Rong Yang, Po-Ying Chen, Yuang-Cherng Chiou & Rong-Tsong Lee,” Effects of mechanical agitation and surfactant additive on silicon anisotropic etching in alkaline KOH solution.” Sensors and Actuators A: Physical 119 (2005) pp.263–270
42.T. Baum & D.J. Schiffrin, “AFM study of surface finish improvement by ultrasound in the anisotropic etching of Si(1 0 0) in KOH for micromachining applications.” Journal of Micromechanics and Microengineering 4 (1997) pp.338–342
43.K. Ohwada, Y. Negoro, Y. Konaka & T. Oguchi, “Groove depth uniformization in (1 1 0) Si anistropic etching by ultrasonic wave and application to accelerometer fabrication.” in: Proceedings of the IEEE MicroElectro-Mech.System Workshop (MEMS’95), Yokohama, Japan (1995) pp.100–105
44.V. Karanassios, J.T. Sharples & A. Nathan, “In situ ultrasound-assisted etching of(1 0 0)Si wafers by KOH.” Sens. Mater. 9 (7) (1997) pp.427–436
45.J. Chen, L. Liu, Z. Li, Z. Tan & Q. Jiang, “Study of anisotropic etching of (1 0 0) Si with ultrasonic agitation.” Sensors and Actuators A: Physical 96 (2002) pp.152–156
46.Jan A. Dziuban, “Microwave enhanced fast anisotropic etching of monocrystalline silicon.” Sensors and Actuators A: Physical 85 (2000) pp.133-138
47.Won Mook Choi & O. Ok Park,“A soft-imprint technique for direct fabrication of submicron scale patterns using a surface-modified PDMS mold.” Microelectronic Engineering 70 (2003) pp.131–136
48.田中正三郎著、賴耿陽譯著,”應用電化學.” 復漢出版社,89 (1994)
49.Stenen D. Leith & Daniel T. Schwartz, “High-Rate Through-Mold Electrodeposition of Thick (>200ìm) Ni-Fe MEMS Components with Uniform Composition.” Journal of Microelectromechanical System 8 (1999) pp.384-392.
50.陳宏澤“界面活性劑在金屬脫脂及酸洗方面之應用.”金屬表面技術雜誌,71 (1981).
51.N. Masuko, T. Osaka & Y. Ito, “Electrochemical technology innovation and new technologies.” Newark: Gordon & Breach 1996
52.P.R. Choudhury, Handbook of microlithography, micromahining, and microfabrication, 2, SPIE Press (1997)
53.S. K. Griffiths, R. H. Nilson, R. W. Bradshaw, A. Ting, W. D. Bonivert, J. T. Hachman & J. M. Hruby, SPIE, 3511, 364(1998)
54.Zen-Jei Wei, Yung-Yun Wang, Chi-Chao Wan & Chein-Ho Huang, “Study of wetters in nickel electroforming of 3D microstructures.” Materials Chemistry and Physics 63 (2000)pp.235-239
55.W. Prapaitrakul, A. Shwikhat, A.D. King Jr.” The influence of pH on gas solubilities in aqueous solutions of sodium octanoate at 25°C.” Journal of colloid and interface science 115 (1987) pp.443-449
56.K. Parker, AESF SUR/FIN 1984, Session B.
57.F. T. Weng, “A study of cathode agitation in ultrasonic-aided microelectroforming.” International Journal of Advanced Manufacturing Technology 25 (2005) pp.909-912
58.Hsiharng Yang & Shung-Wen Kang, “Improvement of thickness uniformity in nickel electroforming for the LIGA process.”International Journal of Machine Tools & Manufacture 40 (2000) pp.1065–1072
59.Younan Xia & George M.Whitesides,”Soft lithography.” Annual review of materials science 28 (1998) pp.153-184
60.K.C. Chan, W.K. Chan & N.S. Qu,”Effect of current waveform on the deposit quality of electroformed nickels.” Journal of Materials Processing Technology 89-90 (1999) pp.447-450
61.S A Campbell, K Coopert, L Dixont, R Earwakert, S N Ports & D J Schiffrins,”Inhibition of pyramid formation in the etching of Si p(100) in aqueous potassium hydroxide-isopropanol.” Journal of Micromechanics and Microengineering 5 (1995) pp.209-218
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
1. 陳伯璋(1999a)。九年一貫新課程綱要修訂的背景、內涵及特性。教育研究資訊,1(7),1-13。
2. 3.邱燦賓,施敏,“電子束微影技術.” 科學發展月刊 28 (2000) pp.423-434
3. 陳文典(1997):STS 教學教師所需之專業準備。科學教育學刊, 5(2),167-189 。
4. 游家政(1999)。九年一貫課程綱要總綱的理念與架構。教師天地,102,34-41。
5. 黃嘉雄(1999)。落實學校本位課程發展的行政領導策略。國民教育,40(1),29-34。
6. 黃永和(1999)。統整課程的理論與方式之探討。新竹師院學報, 12, 232-259。
7. 郭重吉、張惠博(2005)從政策層面評述國際間科學教育的改革。科學教育月刊,284,2005年12月30日,取自www.sec.ntnu.edu.tw/journal/94(276-285)/284-pdf/284-02-郭重吉.pdf。
8. 陳新轉(2003)。「科際整合」觀念在課程與教學應用上的迷思、省思與改進建議。研習資訊,20(4),26-34。
9. 邱美虹(2000)。國民教育階段九年一貫課程綱要「自然與科技」領域中「自然科學」課程綱要之評介。科學教育,231,20-27。
10. 邱兆偉,張雅雯(2001) 試辦國民中學九年一貫課程之評估:課程模式與實施結果。教育學刊,17,1-22。
11. 金恒鑣(2006)。生態學研究與我國現況。科學月刊,435,2006年4月15日取自http://www.scimonth.com.tw/06mar_menu.htm
12. 林生傳、陳慧芬、黃文三(2001)。國民教育階段教師在教育改革政策下的專業成長需求調查研究:以九年一貫課程及教育鬆綁為例,教育學刊, 17,頁23-44。
13. 宋佩芬、周鳳美(2002)。教師應付九年一貫課程改革的態度與原因:試辦階段的觀察。課程與教學季刊, 6 (1),95-112。
14. 方德隆(2000b):課程統整之模式與實務。高雄師大學報, 11, 181-212。
15. 王家通(2004)。十年教改爭議癥結之探討。教育學刊,22,頁1-17。