王進(2008)‧信用管理基礎教程‧中國:中國金融出版社。
林佳蓉(2008)‧信用風險模型之發展與衡量-以中長期資金運用制度為例‧高雄市:國立中山大學財務管理學系碩士論文。林金龍、彭俊能(2012)‧臺灣總體經濟因子對信用風險的影響─專案研究計畫成果與檢討‧人文與社會科學簡訊,14(1),78-86。
沈大白、張大成、劉宛鑫(2002)‧信用評等模型之簡介‧中國商銀月刊,21(11),1-5。
吳莉安(2005)‧中小企業違約信用風險評估流程‧新竹市:國立交通大學工業工程與管理學系碩士論文吳冠誌(2018)‧應用極端梯度提升決策樹建構金融機構信用風險評估模型‧新竹市:國立交通大學工業工程與管理學系碩士論文
游日傑(2004)‧考慮違約相關性下,以「信用價差違約模型」評價信用衍生性商品‧桃園市:國立中央大學財務金融學系碩士論文。黃博怡、張大成、江欣怡(2006)‧考慮總體經濟因素之企業危機預警模型‧金融風險管理季刊,2(2),75-89。
農業金融局(無日期)‧授信實務‧取自https://www.boaf.gov.tw/site/boaf/public/Attachment/992314201471.doc。
楊蓁海(2005)‧新版巴賽爾資本協定與銀行信用風險測度模型的發展:兼論對我國銀行體系與央行政策的影響‧中央銀行季刊,27(1),47-86。
褚鴻烜(2012)‧建立以決策樹為基礎之短期違約放款案件信用風險評估模型‧新竹市:國立交通大學工業工程與管理學系碩士論文歐明鴻(2017)‧利用極端梯度提升決策樹建構液晶面板自動光學檢測瑕疵分類模型‧新竹市:國立交通大學工業工程與管理學系碩士論文Altman, E. I. (1968). Financial ratios, discriminant analysis and the prediction of corporate bankruptcy. The Journal of Finance, 23(4), 589-609.
Baesens, B., Setiono, R., Mues, C., & Vanthienen, J. (2003). Using neural network rule extraction and decision tables for credit-risk evaluation. Management Science, 49(3), 312-329.
Basel Committee on Banking Supervision. (2004). International Convergence of Capital Measurement and Capital Standards. Retrieved from: https://www.bis.org/publ/bcbs107.pdf
Beaver, W. H. (1966). Financial ratios as predictors of failure. Journal of Accounting Research, 71-111.
Berkson, J. (1944). Application of the logistic function to bio-assay. Journal of the American Statistical Association, 39(227), 357-365.
Breiman, L. (1996). Bagging predictors. Machine Learning, 24(2), 123-140.
Cattell, R. B. (1966). The scree test for the number of factors. Multivariate Behavioral Research, 1(2), 245-276.
Chen, T., & Guestrin, C. (2016). Xgboost: A scalable tree boosting system. Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining (pp. 785-794). ACM.
Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine Learning, 20(3), 273-297.
Desai, V. S., Crook, J. N., & Overstreet Jr, G. A. (1996). A comparison of neural networks and linear scoring models in the credit union environment. European Journal of Operational Research, 95(1), 24-37.
Dietterich, T. G. (2000). Ensemble methods in machine learning. In International workshop on multiple classifier systems. (pp. 1-15). Springer, Berlin, Heidelberg.
Dutta, A., Bandopadhyay, G., & Sengupta, S. (2015). Prediction of stock performance in indian stock market using logistic regression. International Journal of Business and Information, 7(1).
Dutta, S., & Shekhar, S. (1988). Bond rating: a non-conservative application of neural networks. In IEEE Int Conf on Neural Networks. Publ by IEEE.
Edmister, R. O. (1972). An empirical test of financial ratio analysis for small business failure prediction. Journal of Financial and Quantitative Analysis, 7(2), 1477-1493.
Fong, Y., Yin, S., & Huang, Y. (2016). Combining biomarkers linearly and nonlinearly for classification using the area under the ROC curve. Statistics in Medicine, 35(21), 3792-3809.
Friedman, J. H. (2001). Greedy function approximation: a gradient boosting machine. Annals of Statistics, 1189-1232.
Haldeman, R. G., & Narayanan, P. (1977). Zeta Analysis: A New Model to Identify Bankruptcy Risk of Corporations. Journal of Banking and Finance, 1, 29-54.
Hajian-Tilaki, K. (2013). Receiver operating characteristic (ROC) curve analysis for medical diagnostic test evaluation. Caspian Journal of Internal Medicine, 4(2), 627.
Han, G. S., Yu, Z. G., & Anh, V. (2014). A two-stage SVM method to predict membrane protein types by incorporating amino acid classifications and physicochemical properties into a general form of Chou's PseAAC. Journal of Theoretical Biology, 344, 31-39.
Hanley, J. A., & McNeil, B. J. (1982). The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology, 143(1), 29-36.
Huang, J. J., Tzeng, G. H., & Ong, C. S. (2006). Two-stage genetic programming (2SGP) for the credit scoring model. Applied Mathematics and Computation, 174(2), 1039-1053.
Huang, C. L., Chen, M. C., & Wang, C. J. (2007). Credit scoring with a data mining approach based on support vector machines. Expert Systems with Applications, 33(4), 847-856.
Koutanaei, F. N., Sajedi, H., & Khanbabaei, M. (2015). A hybrid data mining model of feature selection algorithms and ensemble learning classifiers for credit scoring. Journal of Retailing and Consumer Services, 27, 11-23.
Le, Q. K., Nguyen, H. K. K., Huynh, Q. H., & Huynh, Q. L. (2017). Analyzing Sleep Microstructure by Using Support Vector Machine. In International Conference on the Development of Biomedical Engineering in Vietnam (pp. 307-312). Springer, Singapore.
Lee, T. S., Chiu, C. C., Lu, C. J., & Chen, I. F. (2002). Credit scoring using the hybrid neural discriminant technique. Expert Systems with Applications, 23(3), 245-254.
Lin, S. L. (2009). A new two-stage hybrid approach of credit risk in banking industry. Expert Systems with Applications, 36(4), 8333-8341.
Liu, W., Zhang, M., Luo, Z., & Cai, Y. (2017). An ensemble deep learning method for vehicle type classification on visual traffic surveillance sensors. IEEE Access, 5, 24417-24425.
Luo, S., Cheng, J., & Ao, H. (2015). Application of LCD-SVD technique and CRO-SVM method to fault diagnosis for roller bearing. Shock and Vibration.
Mester, L. J. (1997). What’s the point of credit scoring?. Business Review, 3, 3-16.
Odom, M. D., & Sharda, R. (1990). A neural network model for bankruptcy prediction. In Neural Networks, 1990., 1990 IJCNN International Joint Conference on (pp. 163-168). IEEE.
Ohlson, J. A. (1980). Financial ratios and the probabilistic prediction of bankruptcy. Journal of Accounting Research, 109-131.
Opitz, D. W., & Maclin, R. (1999). Popular ensemble methods: An empirical study. J. Artif. Intell. Res.(JAIR), 11, 169-198.
Orgler, Y. E. (1970). A credit scoring model for commercial loans. Journal of Money, Credit and Banking, 2(4), 435-445.
Pearson, K. (1895). Note on regression and inheritance in the case of two parents. Proceedings of the Royal Society of London, 58, 240-242.
Pearson, K. (1901). LIII. On lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 2(11), 559-572.
Peng, R. (2017). Personal Credit Assessment Model Based on Stacking Ensemble Learning Algorithm.
Quinlan, J. R. (1986). Induction of decision trees. Machine Learning, 1(1), 81-106.
Shahabi, H., Khezri, S., Ahmad, B. B., & Hashim, M. (2014). Landslide susceptibility mapping at central Zab basin, Iran: a comparison between analytical hierarchy process, frequency ratio and logistic regression models. Catena, 115, 55-70.
Shin, K. S., Lee, T. S., & Kim, H. J. (2005). An application of support vector machines in bankruptcy prediction model. Expert Systems with Applications, 28(1), 127-135.
Thyagharajan, A., & Routray, A. (2017, July). An ensemble metric learning scheme for face recognition. In Multimedia and Expo (ICME), 2017 IEEE International Conference on (pp. 115-120). IEEE.
Valiant, L. (2013). Probably Approximately Correct: NatureÕs Algorithms for Learning and Prospering in a Complex World. Basic Books (AZ).
WAN, P., Wu, C., Lin, Y., & Ma, X. (2016). A recognition model of driving anger based on physiological features by ROC curve analysis. The 95th Annu Meeting of Transp Res Board , 10-14.
Wang, G., & Ma, J. (2012). A hybrid ensemble approach for enterprise credit risk assessment based on support vector machine. Expert Systems with Applications, 39(5), 5325-5331.
Wolpert, D. H. (1992). Stacked generalization. Neural Networks, 5(2), 241-259.
Zhang, Y., & Wang, G. (2015). Tool condition monitoring technology for CFRP drilling based on heterogeneous ensemble learning model. Aerospace Materials & Technology, 6, 008.
Zhou, J., & Bai, T. (2008). Credit risk assessment using rough set theory and GA-based SVM. In Grid and Pervasive Computing Workshops, 2008. GPC Workshops' 08. The 3rd International Conference on (pp. 320-325). IEEE.