[1] 經濟部能源局,《一0一年年報》,2012.6。
[2] 詹世弘,各種燃料電池發展史,《科學月刊》,514 2012 742-47。[3] N. Brandon and D. Thompstt, “FUEL CELLS COMPENDIUM”, (2005).
[4] EERE Information Center, “Comparison of Fuel Cell Technologies”, (2011).
[5] C. R. Foschini, D. P. F. Souza, P. I. Paulin Filho and J. A. Varela, “AC impedance study of Ni, Fe, Cu, Mn doped ceria stabilized zirconia ceeamics,” Journal of the European Ceramic Society, 21 (2001) 1143-1150.
[6] Y. Liu and L. E. Lao, “Structural and electrical properties of ZnO-doped 8 mol% yttria-stabilized zirconia,” Solid State Ionics, 177 (2006) 159-163.
[7] M. B. Suresh and R. Johnson, “Structural and electrical properties of co-doped zirconia electrolyte for intermediate temperature solid oxide fuel cell application”, International Journal of Energy Research, 36 (2012) 1291-1297.
[8] B. H. Rainwater, M. Liu and M. Liu, “ A more efficient anode microstructure for SOFCs based on proton conductors,” International Journal of Hydrogen Energy, 37 (2012) 18342-18348.
[9] A. Faes, H. Girard, A. Zryd and Z. Wuillemin, J. V. Herle, “Fabrication of structured anode-supported solid oxide fuel cell by powderinjection molding,” Journal of Power Sources, 227 (2013) 35-40.
[10] R. Küngas, F. Bidrawn, E. Mahmoud, J. M. Vohs, R. J. Gorte, “Evidence of surface-reaction rate limitations in SOFC composite cathodes,” Solid State Ionics, 225 (2012) 146-150.
[11] M. Motoyama, C. C. Chao, J. An, H. J. Jung, T. M. Gür and F. B. Prinz, “Nanotubular Array Solid Oxide Fuel Cell,” ACS NANO, 8 (2014) 340-351.
[12] H. Liu, X. Zhu, M. Cheng, Y. Cong and W. Yang, “Electrochemical performances of spinel oxides as cathodes for intermediate temperature solid oxide fuel cells,” International Journal of Hydrogen Energy, 38 (2013) 1052-1057.
[13] P. Wu, Qiang Li, X. Zou, W. Cheng, D. Zhang, C. Zhao, L. Chi and T. Xiao, “Correlation between photoluminescence and oxygen vacancies in In2O3, SnO2 and ZnO metal oxide nanostructures,” Journal of Physics: Conference Series, 188 (2009) 12054.
[14] A. Ayeshamariam, M. Bououdina and C. Sanjeeviraja, “Optical,electrical and sensing properties of In2O3 nanoparticles,” Materials Science in Semiconductor Processing, 16 (2013) 686-695.
[15] X. Wanga, M. Zhanga, J. Liub, T. Luob and Y. Qiana, “Shape- and phase-controlled synthesis of In2O3 with various morphologies and their gas-sensing properties,” Sensors and Actuators B, 137 (2009) 103-110.
[16] Y. S. Cho and Y. D. Huh, “Controlled-Synthesis and Photocatalytic Properties of h-In2O3 and c-In2O3,” Bulletin of the Korean Chemical Society, 31 (2010) 1769.
[17] H. Zhao, H. Dong, L. Zhang, X. Wang and H. Yang, “Controlled synthesis and photocatalytic properties of porous hollow In2O3 microcubes with different sizes,” Materials Chemistry and Physics, 130 (2011) 921-931.
[18] C. Brahima, A. Ringuedéa, M. Cassira, M. Putkonenb and L. Niinistöb, “Synthesis and Properties of ZrO2-In2O3 Overlayers by ALD on Porous SOFC Stateof-the-Art Cathode,” ECS Transactions, 3 (2007) 261-269.
[19] C. Brahim, F. Chauveau, A. Ringuede´, M. Cassir, M. Putkonen and L. Niinisto, “ZrO2–In2O3 thin layers with gradual ionic to electronic composition synthesized by atomic layer deposition for SOFC applications,” Journal of Materials Chemistry, 19 (2009) 760-766,.
[20] E. Courtin, P. Boy, C. Rouhet, L. Bianchi, E. Bruneton, N. Poirot, C. L. Robert and C. Sanchez, “Optimized Sol−Gel Routes to Synthesize Yttria-Stabilized Zirconia Thin Films as Solid Electrolytes for Solid Oxide Fuel Cells,” Chemistry of Materials, 24 (2012) 4540-4548.
[21] J. W. Fergus, “Electrolytes for solid oxide fuel cells,” Journal of Power Sources, 162 (2006) 30-40.
[22] http://americanhistory.si.edu/fuelcells/origins/orig1.htm
[23] http://americanhistory.si.edu/fuelcells/origins/orig4.htm
[24] http://www.thetruthaboutcars.com/wp-content/uploads/2012/04/electrovan3yt.jpg
[25] http://pubs.rsc.org/en/content/articlelanding/2011/cp/c1cp21987a#!divAbstract
[26] http://www.public.asu.edu/~sshim5/images/images/Shim_AREPS_PPvStructure.png
[27] http://www.mse.nthu.edu.tw/~cjtsai/instrument.htm
[28]丁志明,方冠榮,吳季珍等編著。奈米科技-基礎、應用與實作。高立圖書有限公司,台北,2003。P.35-94
[29] Q. Tang, Wenjia Zhou, Wu Zhang, Shaomin Ou, Ke Jiang,Weichao Yu, and Yitai Qian, ” Size-Controllable Growth of Single Crystal In(OH)3 and In2O3 Nanocubes,” Crystal Growth &; Design, 5 (2005) 147-150.
[30] J. Yang, C. Lin, Z. Wang and J. Lin, “In(OH)3 and In2O3 Nanorod Bundles and Spheres: Microemulsion-Mediated Hydrothermal Synthesis and Luminescence Properties,” Inorganic. Chemistry, 45 (2006) 8973-8979.
[31] H. Zhu, X. Wang, Z. Wang, C. Yang, F. Yang and X. Yang, “Self-Assembled 3D Microflowery In(OH)3 Architecture and Its Conversion to In2O3,” The Journal of Physical Chemistry C, 112 (2008) 15285-15292.