周心怡。拔靴法(Bootstrap)之探討及其應用。碩士論文,國立中央大學桃園市,2004。潘國樑。遙測學大綱-遙測概念,原理與影像判釋技術,第二版。科技圖書股份有限公司,台北市,2009。
Aronoff, S. Remote sensing for GIS managers; ESRI Press: Redlands, California, USA, 2005.
Bickel, P. J.; Doksum, K. A. Mathematical statistics: basic ideas and selected topics, volume I, 2nd ed.; CRC Press, 2015.
Champagne, C.; McNairn, H.; Daneshfar, B.; Shang, J. A bootstrap method for assessing classification accuracy and confidence for agricultural land use mapping in Canada. International Journal of Applied Earth Observation and Geoinformation 2014, 29, 44-52.
Chapin Iii, F. S.; Zavaleta, E. S.; Eviner, V. T.; Naylor, R. L.; Vitousek, P. M.; et al. Consequences of changing biodiversity. Nature 2000, 405(6783), 234-242.
Chen, Y. C.; Chiu, H. W.; Su, Y. F.; Wu, Y. C.; Cheng, K. S. Does urbanization increase diurnal land surface temperature variation? Evidence and implications. Landscape and Urban Planning 2017, 157, 247-258.
Cochran, W. G. Sampling techniques, 2nd ed.; John Wiley and Sons: New York, USA, 1963.
Congalton, R. G. A review of assessing the accuracy of classifications of remotely sensed data. Remote Sensing of Environment 1991, 37(1), 35-46.
Congalton, R. G.; Green, K. A practical look at the sources of confusion in error matrix generation. Photogrammetric Engineering and Remote Sensing 1993, 59(5), 641-644.
Congalton, R. G.; Green, K. Assessing the accuracy of remotely sensed data: principles and applications; Lewis Publishers: Boca Raton, Florida, USA, 1999.
Congalton, R. G.; Plourde, L. Quality assurance and accuracy assessment of information derived from remotely sensed data. In Manual of geospatial science and technology; Bossler, J. D., Jensen, J. R., McMaster, R. B., Rizos C., Eds.; CRC Press, 2002; pp. 349-361.
Czaplewski, R. L. Variance approximations for assessments of classification accuracy. Research Paper, Res. Pap. RM-RP-316. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Forest and Range Experiment Station. 29 p, 1994.
Demirkesen, A. C.; Evrendilek, F.; Berberoglu, S.; Kilic, S. Coastal flood risk analysis using Landsat-7 ETM+ imagery and SRTM DEM: A case study of Izmir, Turkey. Environmental monitoring and assessment 2007, 131(1-3), 293-300.
Di Stefano, J. A confidence interval approach to data analysis. Forest Ecology and Management 2004, 187(2), 173-183.
Douglas, I. Hydrological investigations of forest disturbance and land cover impacts in South–East Asia: a review. Philosophical Transactions of the Royal Society of London B: Biological Sciences 1999, 354(1391), 1725-1738.
Efron, B. Bootstrap methods: Another look at the jackknife. The Annals of Statistics 1979, 7(1), 1-26.
Efron, B.; Tibshirani, R. J. An introduction to the bootstrap.; CRC press, 1994.
Fitzgerald, R.; Lees, B. Assessing the classification accuracy of multisource remote sensing data. Remote Sensing of Environment 1994, 47(3), 362-368.
Fitzpatrick-Lins, K. Comparison of sampling procedures and data analysis for a land-use and land-cover map. Photogrammetric Engineering and Remote Sensing 1981, 47(3), 343-351.
Fleiss, J. L.; Levin, B.; Paik, M. C. Statistical methods for rates and proportions. John Wiley and Sons: New York, USA, 2013.
Foody, G. M. Status of land cover classification accuracy assessment. Remote Sensing of Environment 2002, 80(1), 185-201.
Foody, G. M. Sample size determination for image classification accuracy assessment and comparison. International Journal of Remote Sensing 2009, 30(20), 5273-5291.
Franklin, S. E.; Peddle, D. R.; Wilson, B. A.; Blodgett, C. F. Pixel sampling of remotely sensed digital imagery. Computers & Geosciences 1991, 17(6), 759-775.
Gopal, S.; Woodcock, C. Theory and methods for accuracy assessment of thematic maps using fuzzy sets. Photogrammetric Engineering and Remote Sensing 1994, 60(2), 181-188.
Hess, G. R.; Bay, J. M. Generating confidence intervals for composition-based landscape indexes. Landscape Ecology 1997, 12(5), 309-320.
Hsiao, L. H.; Cheng, K. S. Assessing uncertainty in LULC classification accuracy by using bootstrap resampling. Remote Sensing 2016, 8(9), 705.
Hung, W. C.; Chen, Y. C.; Cheng, K. S. Comparing landcover patterns in Tokyo, Kyoto, and Taipei using ALOS multispectral images. Landscape and Urban Planning 2010, 97(2), 132-145.
Janssen, L. L. F.; van der Wel, F. J. M. Accuracy assessment of satellite derived landcover data: A review. Photogrammetric engineering and remote sensing 1994, 60(4), 419-426.
Johnson R. A. and Wichern D. W. Applied multivariate statistical analysis, 6th ed.; Prentice Hall: Upper Saddle River, NJ, USA, 2007; pp. 170-171.
Kohavi, R. A study of cross-validation and bootstrap for accuracy estimation and model selection. In C. S. Mellish, ed., Proceedings of the 14th International Joint Conference on Articial Intelligence; Morgan Kaufmann: Montreal, Canada. San Mateo, CA, 1995; pp. 1137-1143.
Lang, R.; Shao, G.; Pijanowski, B. C.; Farnsworth, R. L. Optimizing unsupervised classifications of remotely sensed imagery with a data-assisted labeling approach. Computers & Geosciences 2008, 34(12), 1877-1885.
Lillesand, T.; Kiefer, R. W.; Chipman, J. Remote sensing and image interpretation, 7nd ed.; John Wiley and Sons: New York, USA, 2015.
Lu, D.;Weng, Q. A survey of image classification methods and techniques for improving classification performance. International Journal of Remote Sensing 2007, 28(5), 823-870.
Lunetta, R. S.; Lyon, J. G. Remote sensing and GIS accuracy assessment. CRC press, 2004.
McCaffrey, T. M.; Franklin, S. E. Automated training site selection for large-area remote-sensing image analysis. Computers & Geosciences 1993, 19(10), 1413-1428.
Muller, S.; Walker, D.; Nelson, F.; Auerback, N.; Bockheim, J.; et al. Accuracy assessment of a land-cover map of the Kuparuk river basin, Alaska: considerations for remote regions. Photogrammetric Engineering and Remote Sensing 1998, 64(6), 619-628.
Pal, M. Random forest classifier for remote sensing classification. International Journal of Remote Sensing 2005, 26(1), 217-222.
Penner, J. E. Atmospheric chemistry and air quality. In Changes in land use and land cover: a global perspective; Meyer, W. B., Turner II B. L., Eds.; Cambridge University Press: New York, USA , 1994; pp. 175-209.
Powell, R.; Matzke, N.; De Souza, C.; Clark, M.; Numata, I.; et al. Sources of error in accuracy assessment of thematic land-cover maps in the Brazilian Amazon. Remote Sensing of Environment 2004, 90(2), 221-234.
Saeed, N.; Pervaiz, M. K.; Shahbaz, M. Q. Determination of sample size. European Journal of Scientific Research 2005, 14(3), 319-325.
Stehman, S. Thematic map accuracy assessment from the perspective of finite population sampling. Remote Sensing 1995, 16(3), 589-593.
Stehman, S. V. Design, analysis, and inference for studies comparing thematic accuracy of classified remotely sensed data: a special case of map comparison. Journal of Geographical Systems 2006, 8(2), 209-226.
Stehman, S. V.; Czaplewski, R. L. Design and analysis for thematic map accuracy assessment: fundamental principles. Remote Sensing of Environment 1998, 64(3), 331-344.
Story, M.; Congalton, R. G. Accuracy assessment: a user’s perspective. Photogrammetric Engineering and Remote Sensing 1986, 52(3), 397-399.
Tortora, R. D. A note on sample size estimation for multinomial populations. The American Statistician 1978, 32(3), 100-102.
Vitousek, P. M. Beyond global warming: ecology and global change. Ecology 1994, 75(7), 1861-1876.
Xu, H. Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery. International journal of remote sensing 2006, 27(14), 3025-3033.