跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.110) 您好!臺灣時間:2025/09/28 13:59
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林語潔
研究生(外文):Lin, Yu-Jie
論文名稱:大氣PM2.5水溶性無機鹽及其前驅氣體之熱平衡研究
論文名稱(外文):A Study on Thermodynamic Equilibrium of Ambient PM2.5 Water-soluble Inorganic Ions and Precursor Gases
指導教授:蔡春進蔡春進引用關係
指導教授(外文): Tsai, Chuen-Jinn
口試委員:黃政雄程裕祥李書安
口試委員(外文):Huang, Cheng-HsiungCheng, Yu-HsiangLee, Shu-An
口試日期:2018-07-05
學位類別:碩士
校院名稱:國立交通大學
系所名稱:環境工程系所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:中文
論文頁數:70
中文關鍵詞:ISORROPIA-II水溶性無機離子PM2.5化學成分
外文關鍵詞:ISORROPIA-IIwater-soluble inorganic ionsPM2.5 chemical composition
相關次數:
  • 被引用被引用:0
  • 點閱點閱:338
  • 評分評分:
  • 下載下載:8
  • 收藏至我的研究室書目清單書目收藏:0
本研究使用一部結合平行平板濕式固氣分離器(Parallel Plate Wet Denuder, PPWD)與液膜微粒採樣器(Particle into Liquid Sampler, PILS)的酸鹼氣體及微粒自動監測系統(PPWD-PILS)在交大校園內進行大氣前驅氣體及PM2.5水溶性無機離子的監測,並將監測結果輸入至大氣氣膠熱平衡模型ISORROPIA-II計算熱平衡理論值以比對前驅氣體及PM2.5水溶性無機鹽觀測值與熱平衡理論值的關係。另外,本研究亦使用錐形元件振盪微量天平(tapered element oscillating microbalance with the filter dynamic measurement system, TEOM-FDMS)及微粒碳成分分析儀(OC-EC Analyzer)分別進行PM2.5質量濃度及PM2.5碳成分的監測以探討PM2.5化學組成,並使用10階微孔均勻沉降衝擊器(Micro-orifice uniform deposit cascade impactor, MOUDI)進行採樣以探討水溶性無機離子的粒徑分布。
PM2.5化學質量重建的結果顯示,微粒主要成分為二次無機鹽(Secondary Inorganic Aerosol ,SIA),其次為有機物質(Organic Matter, OM),佔PM2.5比例分別為40.50 ± 11.79%及18.49 ± 6.63 %,重建後的PM2.5質量濃度佔TEOM實測比例為 62.21 ± 15.32 %。
在與ISORROPIA-II比對方面,前驅氣體NH3(g)及PM2.5水溶性無機離子NH4+(p)有良好的比對結果,R2分別為0.83及0.82;SO42-(p)由於不具揮發性,比對結果一致,R2為1;HNO3(g)及NO3-(p)相關性較差,R2分別為0.12及0.48,此結果是由於大氣HNO3(g)及NO3-(p)濃度低且尚未考慮到粒徑大於2.5 μm的水溶性無機離子導致。
由水溶性無機離子的粒徑分布採樣結果得知,NH4+、NO3-及SO42-位於粗微粒的比例為分別為10.28%、42.76%及13.29%。利用各離子在粗微粒及細微粒的比例將觀測的PM2.5 數據放大至PM10後再與ISORROPIA-II比對,結果顯示NO3-(p)的比對得到改善,R2從原本的0.48上升至0.73,而HNO3(g)仍相關性不佳,並在ISORROPIA-II存在許多極低值,而這些值是由於HNO3(g)與NH3(g)進行反應並消耗HNO3(g)所造成,另使用NH3-HNO3-H2SO4 System計算大氣熱平衡的結果與觀測的比對在NO3-有低估的情形是由於較高濃度的SO42-使其降低解離常數所產生。
Ambient PM2.5 water-soluble inorganic ions and precursor gases at the NCTU site were measured using an online monitoring system, PPWD-PILS. In order to compare the observed data and theoretical value, the hourly data was input into a thermodynamic equilibrium model, ISORROPIA-II. In addition, for discussing the chemical composition of PM2.5, TEOM-FDMS and OC-EC analyzer were used to measure PM2.5 mass concentration and PM2.5 carbon composition, respectively. Moreover, MOUDI was used to investigate the particle size distribution of water-soluble inorganic ions.
The chemical composition of PM2.5 obtained by mass reconstruction showed that the primary component of the particles was Secondary Inorganic Aerosol (SIA), and secondary is Organic Matter (OM), which accounted for 40.50 ± 11.79% and 18.49 ± 6.63 %, respectively. The reconstructed PM2.5 mass concentration accounted for 62.21 ± 15.32% of mass concentration measured by TEOM.
In comparison with ISORROPIA-II, the precursor gas NH3(g) and NH4+(p) have a good agreement, R2 is 0.83 and 0.82, respectively; HNO3(g) and NO3-(p) are scattered, and R2 is 0.12 and 0.48, respectively. The result is due to the low concentration of atmospheric HNO3(g) and NO3-(p). It is caused by not considering water-soluble inorganic ions of particles which were larger than 2.5 μm.
In the results of the water-soluble inorganic ions size distribution, the percentage of NH4+, NO3- and SO42- in the coarse particles were 10.28%, 42.76%, and 13.29%, respectively. Using the ratio of each ion in the ratio of coarse particles to fine particles, the observed PM2.5 data was adjusted to PM10 and then compared with ISORROPIA-II. The results showed that the comparison of NO3-(p) was improved, and R2 increased from 0.48 to 0.73, while HNO3(g) is still scattered, and there are also many extremely low values in ISORROPIA-II, and these values are caused by HNO3(g) reacting with NH3(g) and consuming HNO3(g). The NH3-HNO3-H2SO4 System was used to calculate the theoretical thermodynamic equilibrium and it was underestimated in NO3-.
第一章 前言 1
1.1研究背景 1
1.2 研究目的 2
第二章 文獻回顧 3
2.1細懸浮微粒中之水溶性無機鹽組成 3
2.1.1 大氣微粒中水溶性無機鹽類探討 3
2.1.2陰陽離子當量比及中和比 6
2.1.3 大氣中的化學反應 7
2.2 大氣氣膠熱平衡 9
2.2.1 大氣氣膠熱平衡模型 9
2.2.2 ISORROPIA-II大氣熱平衡計算 10
2.2.3 ISORROPIA-II的相關研究 12
第三章 研究方法 16
3.1採樣地點介紹 16
3.2大氣監測系統 17
3.2.1液膜微粒採樣器(Particle into Liquid Sampler, PILS) 17
3.2.2平行平板濕式固氣分離器(Parallel Plate Wet Denuder, PPWD) 18
3.2.3錐形元件振盪微量天平(tapered element oscillating microbalance with the filter dynamic measurement system, TEOM-FDMS, Thermo, 1405-DF) 19
3.2.4微粒碳成分監測(OC/EC) 20
3.3大氣氣膠手動採樣器 21
3.3.1 十階微孔均勻沉降衝擊器 21
3.4 水溶性離子成分分析方法 23
3.4.1大氣酸鹼氣體及微粒自動監測系統 23
3.4.2大氣氣膠水溶性離子手動採樣方法 25
3.4.3 離子層析儀Ion Chromatrography ( IC) 25
3.5品質保證及品質管制(Quality Assurance/Quality Control, QA/QC) 27
3.5.1檢量線的建立及查核 27
3.5.2 儀器偵測極限(IDL)與方法偵測極限(MDL) 30
3.5.3 空白樣品分析 31
3.6氣體及微粒濃度計算 32
3.6.1 大氣自動監測系統濃度計算 32
3.6.2 大氣氣膠手動採樣濃度計算 34
第四章 研究結果與討論 35
4.1 交通大學PM2.5濃度監測結果 35
4.1.1 PM2.5微粒水溶性無機離子濃度 35
4.1.2 陰陽離子當量比(A/C Ratio)及中和比(N.R) 36
4.1.3 硫氧化率(S.O.R)及氮氧化率(N.O.R) 37
4.1.4 PM2.5化學質量重建(mass reconstruction) 38
4.2自動監測系統PPWD-PILS與ISORROPIA -II之PM2.5水溶性無機微粒與前驅氣體比對結果 41
4.2.1觀測值與 ISORROPIA –II比對結果 41
4.2.2水溶性無機離子粒徑分布 44
4.2.3觀測值PM10與 ISORROPIA -II進行比對 47
4.2.4 大氣中硝酸的反應 49
4.2.5 大氣NH3-HNO3-H2SO4 System的熱平衡理論計算 52
4.2.6 濃度誤差之探討 56
第五章 結論 58
第六章 參考文獻 59
附錄A- 交大校園化學質量重建結果 67
Allen, A. G., R. M. Harrison, and J. Erisman (1989). Field measurements of the dissociation of ammonium nitrate and ammonium chloride aerosols, Atmos. Environ., 23: 1591-1599.
Allen, H. M., Draper, D. C., Ayres, B. R., Ault A., Bondy, A. Takahama, S., Modini, R. L. Baumann, K., Edgerton, E., Knote, C., Laskin, A., Wang, B., and Fry, J. L. (2015). Influence of crustal dust and sea spray supermicron particle concentrations and acidity on inorganic NO3- aerosol during the 2013 Southern Oxidant and Aerosol Study. Atmos. Chem. Phys., 15:10669–10685.
Altshuller, A. P. (1984). Atmospheric particle sulfur and sulfur dioxide relationships at urban and nonurban locations. Atmos. Environ., 18: 1421-1431.
Amundson, N. R., Caboussat, A., He, J. W., Martynenko, A. V., Savarin, V. B., Seinfeld, J. H., and Yoo, K. Y. (2006). A new inorganicatmospheric aerosol phase equilibrium model (UHAERO). Atmos. Chem. Phys., 6: 975-992.
Ansari, A. S. and Pandis, S. N. (1999). Prediction of multicomponent inorganic atmospheric aerosol behavior. Atmos. Environ., 33: 745-757.
Bassett, M. and Seinfeld, J. H. (1983). Atmospheric equilibrium model of sulfate and nitrate aerosols. Atmos. Environ. 17:11:2237-2252.
Carslaw, K. S., Clegg, S. L., and Brimblecombe, P. (1995). A Thermodynamic Model of the System HCl-HNO3-H2S04-H20, Including Solubilities of HBr, from <200 to 328 K. J. Phys. Chem. 99: 11557-11574.
Chan, C. K. and Ha, Z. (1999). A simple method to derive the water activities of highly supersaturated binary electrolyte solutions from ternary solution data. J. Geophys. Res. 30:193-200.
Chan, C. K., Flagan R. C., Seinfeld, J. H. (1992). Water activities of NH4NO3/(NH4)2SO4 solutions. Atmos. Environ. 26:9:1661-1673.

Chang, L. T. C., Tsai, J. H., Lin, J. M., Huang, Y. S., and Chiang, H. L. (2011). Particulate matter and gaseous pollutants during a tropical storm and air pollution episode in Southern Taiwan. Atmos. Res., 99: 67-79. Atmos. Environ. 45:2651-2662.
Cheung, K., Daher, N., Kama, W., Shafer, M. M., Ning, Z., Schauer, J. J., Sioutas, C. (2011). Spatial and temporal variation of chemical composition and mass closure of ambient coarse particulate matter (PM10-2.5) in the Los Angeles area.
Chien, C.L., Iswara, A. P., Liou, Y. L., Wang, B. T., Chang, J. C., Hung, Y. H., and Tsai, C. J. (2015). A real-time monitoring system for soluble gas pollutants and it’s application for determining the control efficiency of packed towers. Sep. Purif. Technol., 154: 137-148.
Clegg, S. L., Pitzer, K. S., and Brimblecombe, P. (1992). Thermodynamics of multicomponent, miscible, ionic solutions. II. Mixture including unsymmetrical electrolytes. J. Phys. Chem., 96: 9470-9479.
Colbeck, I., and Harrison, R. M. (1984). Ozone-Secondary Aerosol-Visibility Relationships in North-West England. Sci. Total Environ., 34: 87-100.
Dikaiakos, J. G., Tsitouris, G. G., Sisjos, P. A., Melissos, D. A., and Nastos, P. (1990). Rainwater composition in Athens, Greece. Atmos. Environ., 24B: 171-176.
Fountoukis, C., and Nenes, A. (2007). ISORROPIA II: a computationally efficient thermodynamic equilibrium model for K+-Ca2+-Mg2+-NH4+-Na+-SO42−-NO3- -Cl−-H2O aerosols. Atmos. Chem. Phys., 7: 4639-4659.
Fountoukis, C., Nenes, A., Sullivan, A., Weber, R., Reken, T. V., Fischer, M., Matias, E., Moya, M., Farmer, D., and Cohen, R. C. (2009). Thermodynamic characterization of Mexico City aerosol during MILAGRO 2006. Atmos. Chem. Phys., 9: 2141-2156.
Guo, H., Liu, J., Froyd, K. D., Roberts, J. M.,Veres, P.R., Hayes, P. L., Jimenez, J. L., Nenes, A., and Weber, R. J. (2017). Fine particle pH and gas–particle phase partitioning of inorganic species in Pasadena, California, during the 2010 CalNex campaign. Atmos. Chem. Phys., 17: 5703–5719.
Hamer, W. J. and Wu, Y. C. J. (2009). Osmotic Coefficients and Mean Activity Coefficients of Uni-univalent Electrolytes in Water at 25°C. Phys. Chem. Ref. Data. 1:1047.
Han, B., Zhang, R., Yang, W., Bai, Z., Ma, Z., and Zhang, W. (2016). Heavy haze episodes in Beijing during January 2013: Inorganic ion chemistry and source analysis using highly time-resolved measurements from an urban site. Sci. Total Environ., 544: 319-329.
Heintzenberg, J. (1989). Fine particles in the global troposphere A review. Tellus., 41B: 149-160.
Hennigan, C. J., Sullivan, A. P., Fountoukis, C. I., Nenes, A., Hecobian, A., Vargas, O., Peltier, R. E., Hanks, A. T. C., Huey, L. G., Lefer, B. L., Russell, A. G., and Weber, R. J. (2008). On the volatility and production mechanisms of newly formed nitrate and water soluble organic aerosol in Mexico City. Atmos. Chem. Phys., 8: 3761–3768.
Hildemann, L. M., Russell, A. G., and Cass, G. R. (1984). Ammonia and nitric acid concentrations in equilibrium with atmospheric aerosols: Experiment vs theory. Atmos. Environ. 18:9:1737-1750.
Huang, X., Qiu, R., Chan, C. K., and Kant, P. R. (2011). Evidence of high PM2.5 strong acidity in ammonia-rich atmosphere of Guangzhou, China: Transition in pathways of ambient ammonia to form aerosol ammonium at [NH4+]/[SO4 2–]=1.5. Atmos. Res., 99: 488-495.
Hueglin, C., Gehrig, R., Baltensperger, U. Gysel, M., Monn, C., and Vonmont, H. (2005). Chemical characterisation of PM2.5, PM10 and coarse particles at urban, near-city and rural sites in Switzerland. Atmos. Environ., 39: 637-651.
Jacobson, M. Z., Tabazadeh, A., and Turco, R. P. (1996). Simulating equilibrium within aerosols and nonequlibrium between gases and aerosols. J. Geophys. Res., 101:9079-9091.
Karydis, V. A., Tsimpidi, A. P., Fountoukis, C., Nenes, A., Zavala, M., Lei, W., Molina, L. T., and Pandis, S. N. (2010). Simulating the fine and coarse inorganic particulate matter concentrations in a polluted megacity. Atmos. Environ., 44: 608-620.
Kim, Y. P., Seinfeld, J. H., and Saxena, P. (1993). Atmospheric gas-aerosol equilibrium I. Thermodynamic model. Aerosol Sci.Technol., 19: 157-181.
Li, H., Zhang, Q., Zheng, B., Chen, C., Wu, N., Guo, H., Zhang,Y., Zheng, Y., Li, X., and He, K. (2018). Nitrate-driven urban haze pollution during summertime over the North China Plain. Atmos. Chem. Phys., 18: 5293–5306.
Li, W. J., Shao, L. Y., and Buseck, P. R. (2010). Haze types in Beijing and the influence of agricultural biomass burning. Atmos. Chem. Phys., 10: 8119-8130.
Lin, Y. C., Cheng, M. T., Ting, W. Y., and Yeh, C. R. (2006). Characteristics of gaseous HNO2, HNO3, NH3 and particulate ammonium nitrate in an urban city of Central Taiwan. Atmos. Environ., 40: 4725-4733.
Makar, P. A., Bouchet, V. S., and Nenes, A. (2003). Inorganic chemistry calculations using HETV-a vectorized solver for the SO42--NO3--NH4+ system based on the ISORROPIA algorithms. Atmos. Environ., 37: 2279–2294.
Marple, V. A., Rubow, K. L., and Behm, S. M. (1991). A Microorifice Uniform Deposit Impactor (MOUDI): Description, Calibration, and Use. Aerosol. Sci. Technol., 14:434-446.
Martini, F. M. S., West, J. J., Foy, B., Molina, L. T., Molina, M. J., Sosa, G., McRae, G. J. (2005). Modeling Inorganic Aerosols and Their Response to Changes in Precursor Concentration in Mexico City. J. Air & Waste Manage. Assoc. 55:803–815.
Meissner, H. P., Kusik, C. L., Tester, J. W. (1972). Activity Coefficients of Strong Electrolytes in Aqueous Solution-Effect of Temperature. AlChE J. 18:3:661-662.
Meng, Z., and J. H. Seinfeld (1996). Timescales to achieve atmospheric gas-aerosol equilibrium for volatile species, Atmos. Environ., 30: 2889-2900.
Metzger, S. M., Dentener, F. J., Lelieveld, J., and Pandis, S. N. (2002). Gas/aerosol partitioning I: a computationally efficient model. J. Geophys. Res., 107: 4312.

Metzger, S., Mihalopoulos, N., and Lelieveld, J. (2006). Importance of mineral cations and organics in gas-aerosol partitioning of reactive nitrogen compounds: case study based on MINOS results. Atmos. Chem. Phys., 6: 2549-2567.
Morino, Y., Kondo, Y., Takegawa, N., Miyazaki, Y., Kita, K., Komazaki, Y., Fukuda, M., Miyakawa, T., Moteki, N., and Worsnop, D. R. (2006). Partitioning of HNO3 and particulate nitrate over Tokyo: Effect of vertical mixing. J. Geophys. Res., 111, D15215.
Moya, M., Ansari, A. S., and Pandis, S. N. (2001). Partitioning of nitrate and ammonium between the gas and particulate phases during the 1997 IMADA-AVER study in Mexico City. Atmos. Environ., 35: 1791-1804.
Moya, M., Pandis, S. N., and Jacobson, M. J. (2002). Is the size distribution of urban aerosols determined by thermodynamic equilibrium? An application to Southern California. Atmos. Environ., 36: 2349-2365.
Mozurkewich, M. (1993). The dissociation constant of ammonium nitrate and its dependence on temperature, relative humidity and particle size. Atmos. Environ., 27:2: 261-270.
Nenes, A., Pandis, S. N., and Pilinis, C. (1998). ISORROPIA: A new thermodynamic equilibrium model for multiphase multicomponent inorganic aerosols. Aquat. Geochem., 4: 123-152.
Nenes, A., Pilinis, C., and Pandis, S. N. (1999). Continued development and testing of a new thermodynamic aerosol module for urban and regional air quality models. Atmos. Environ., 33: 1553-1560.
Ohta, S., and Okita, T. (1990). A Chemical Characterization of Atmospheric Aerosol in Sapporo. Atmos. Environ., 24A: 4: 815 822.
Okuyama, K., Kousaka, Y., and Motouchi, T. (1984). Condensationa l Growth of Ultrafine Aerosol Particles in a New Particle Size Magnifier. Aerosol Sci. Technol., 3: 353–366.
Rard, J. A., Habenschuss, A., and Spedding, F. H. A review of the osmotic coefficients of aqueous calcium chloride at 25℃. (1977). J. Chem. Eng. Data. 22: 2: 180-186.
Samara, C., Tsitouridou, R., and Balafoutis, C. (1992). Chemical composition of rain in Thessaloniki, Greece, in relation to meteorological conditions. Atmos. Environ., 26B: 359-367.
Sanusi, A., Wortham, H., Millet, M., and Mirabel, P. (1996). Chemical Composition of Rainwater in Eastern France. Atmos. Environ., 30: 1: 59-71.
Saxena, P. and Peterson. T. W. (1981). Thermodynamics of multicomponent electrolytic aerosols. J. Colloid. Interf. Sci., 79:2:496-510.
Saxena, P., Seigneur, C., and Peterson. T. W. (1983). Modeling of multiphase atmospheric aerosols. Atmos. Environ., 17:7:1315-1329.
Schiferl, L. D., Heald, C. L., Nowak, J.B., Holloway, J. S., Neuman, J. A., Bahreini, R., Pollack, I. B., Ryerson, T. B., Wiedinmyer, C., and Murphy, J. G. (2014). An investigation of ammonia and inorganic particulate matter in California during the CalNex campaign. Res. Atmos., 119: 1883-1902.
Seinfeld, J.H., and Pandis, S.N. (1998). Atmospheric Chemistry and Physics: from Air Pollution to Climate Change. John Wiley & Sons, Inc., New York
Seinfeld, J.H., and Pandis, S.N. (2006). Atmospheric Chemistry and Physics: from Air Pollution to Climate Change Second Edition. John Wiley & Sons, Inc., New York.
Shon, Z.H., Kim, K. H., Song, S. K., Jung, K., Kim, N. J., and Lee, J. B. (2012). Relationship between water-soluble ions in PM2.5 and their precursor gases in Seoul megacity. Atmos. Environ., 59: 540-550.
Stelson, A. W., and Seinfeld, J. H. (1982). Thermodynamic prediction of the water activity, NH4NO3dissociation constant, density and refractive index for the NH4NO3-(NH4)2SO4-H2O system at 25°C, Atmos. Environ. 16: 2507-2514.
Stelson, A.W., and Seinfeld, J.H. (1982). Relative Humidity and Temperature Dependence of the Ammonium Nitrate Dissociation Constant. Atmos. Environ., 16:5:983-992.
Stokes, R. H., and Robinson, R. A. (1966). Interactions in Aqueous Nonelectrolyte Solutions. I. Solute-Solvent Equilibria. J. Phys. Chem.,70:7:2126-2131.
Sudheer, A.K., and Rengarajan, R. (2015). Time-resolved inorganic chemical composition of fine aerosol and associated precursor gases over an urban environment in western India: Gas-aerosol equilibrium characteristics. Atmos. Environ., 109: 217-227.
Tang, X., Zhang, X., Ci, Z., Guo, J., and Wang, J. (2016). Speciation of the major inorganic salts in atmospheric aerosols of Beijing, China: Measurements and comparison with model. Atmos. Environ., 133: 123-134.
Trebs, I., Metzger, S., Meixner, F. X., Helas, G., Hoffer, A., Rudich, Y., Falkovich, A. H., Moura, M. A. L., Silva Jr., R. S., Artaxo, P., Slanina, J., and Andreae, M. O. (2005). The NH4+-NO3--Cl--SO42--H2O aerosol system and its gas phase precursors at a pasture site in the Amazon Basin: How relevant are mineral cations and soluble organic acids? J. Geophys. Res. VOL. 110:D07303.
Tsai, C. J., Lin, G. Y., and Chen, S.C. (2008). A Parallel Plate Wet Denuder for Acidic Gas Measurement. Wiley InterScience. (www.interscience.wiley.com).
Tsai, J. H., Lai, W. F., and Chiang, H. L. (2013). Characteristics of particulate constituents and gas precursors during the episode and non-episode periods. J. Air & Waste Manage. Assoc.2162-2906.
Weber, R. J., Orsini, D., Daun, Y., Lee, Y. N., Klotz, P. J., and Brechtel, F. (2001). A Particle-into-Liquid Collector for Rapid Measurement of Aerosol Bulk Chemical Composition. Sci. Technol., 35:3, 718-727.
Wei, L. F., Duan, J.C., Tan, J. H., Ma, Y. L., He, K. B., Wang, S. X., Huang, X. F., and Zhang, Y. X. (2015). Gas-to-particle conversion of atmospheric ammonia and sampling artifacts of ammonium in spring of Beijing. Sci China Earth Sci., 58: 3: 345-355.
Wexler, A. S., and J. H. Seinfeld (1990). The distribution of ammonium salts among a size and composition dispersed aerosol, Atmos. Environ., 24: 1231-1246.
Wexler, A. S., and Seinfeld, John. H. (1991). Second-generation inorganic aerosol model. Atmos. Environ. 25:12:2731-2748.

Yao, X., Chan, C.K., Fang, F., Cadle, S., Chan, T., Mulawa, P., He, K., and Ye, B. (2002). The water-soluble ionic composition of PM2.5 in Shanghai and Beijing, China. Atmos. Environ., 36: 4223-4234.
Yao, X., Ling, T. Y., Fang, M., and Chan, C.K. (2006). Comparison of thermodynamic predictions for in situ pH in PM2.5. Atmos. Environ., 40: 2835-2844.
Yu, S., Dennis, R., Roselle, S., Nenes, A., Walker, J., Eder, B., Schere, K., Swall, J., and Robarge, W. (2005). An assessment of the ability of three-dimensional air quality models with current thermodynamic equilibrium models to predict aerosol NO3- , J. Geophys. Res., 110, D07S13, doi:10.1029/2004JD004718.
Zanobetti, A., Schwartz, J., and Dockery, D. W. (2000). Airborne particles are a risk factor for hospital admissions for heart and lung disease. EHP., 108: 1071-1082.
Zhang, T., Claeys, M., Cachier, H., Dong, S., Wang W., Maenhaut, W., and Liu, X. (2008). Identification and estimation of the biomass burning contribution to Beijing aerosol using levoglucosan as a molecular marker. Atmos. Environ., 42: 7013-7021.
Zhou, J. J., Shi, J. H., Li, L. P., Yao, X. H., and Gao, H. W. (2015). Concentration of Acidic Gases, Ammonia and Related Water-Soluble Ions in PM2.5 and Gas-Particle Partitioning in Qingdao. Environ. Sci., 36: 9: 3135-3143.
行政院環保署環境檢驗所,環境檢驗方法偵測極限測定指引,NIEA-PA107,民國94年。
行政院環保署環境檢驗所,環境檢驗品管分析執行指引,NIEA-PA104,民國94年。
行政院環保署環境檢驗所,環境檢驗檢量線製備及查核指引,NIEA-PA103,民國94年。
蔡春進,104年度「新竹市垃圾焚化廠周界空氣細懸浮微粒(PM2.5)檢測計畫」,期末報告,民國105年。
蔡春進,104年度「辦理都會區空氣中細懸浮微粒即時化學成分調查計畫」,期中報告,EPA-104-1602-02-01,民國104年。
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top