|
Allen, A. G., R. M. Harrison, and J. Erisman (1989). Field measurements of the dissociation of ammonium nitrate and ammonium chloride aerosols, Atmos. Environ., 23: 1591-1599. Allen, H. M., Draper, D. C., Ayres, B. R., Ault A., Bondy, A. Takahama, S., Modini, R. L. Baumann, K., Edgerton, E., Knote, C., Laskin, A., Wang, B., and Fry, J. L. (2015). Influence of crustal dust and sea spray supermicron particle concentrations and acidity on inorganic NO3- aerosol during the 2013 Southern Oxidant and Aerosol Study. Atmos. Chem. Phys., 15:10669–10685. Altshuller, A. P. (1984). Atmospheric particle sulfur and sulfur dioxide relationships at urban and nonurban locations. Atmos. Environ., 18: 1421-1431. Amundson, N. R., Caboussat, A., He, J. W., Martynenko, A. V., Savarin, V. B., Seinfeld, J. H., and Yoo, K. Y. (2006). A new inorganicatmospheric aerosol phase equilibrium model (UHAERO). Atmos. Chem. Phys., 6: 975-992. Ansari, A. S. and Pandis, S. N. (1999). Prediction of multicomponent inorganic atmospheric aerosol behavior. Atmos. Environ., 33: 745-757. Bassett, M. and Seinfeld, J. H. (1983). Atmospheric equilibrium model of sulfate and nitrate aerosols. Atmos. Environ. 17:11:2237-2252. Carslaw, K. S., Clegg, S. L., and Brimblecombe, P. (1995). A Thermodynamic Model of the System HCl-HNO3-H2S04-H20, Including Solubilities of HBr, from <200 to 328 K. J. Phys. Chem. 99: 11557-11574. Chan, C. K. and Ha, Z. (1999). A simple method to derive the water activities of highly supersaturated binary electrolyte solutions from ternary solution data. J. Geophys. Res. 30:193-200. Chan, C. K., Flagan R. C., Seinfeld, J. H. (1992). Water activities of NH4NO3/(NH4)2SO4 solutions. Atmos. Environ. 26:9:1661-1673. Chang, L. T. C., Tsai, J. H., Lin, J. M., Huang, Y. S., and Chiang, H. L. (2011). Particulate matter and gaseous pollutants during a tropical storm and air pollution episode in Southern Taiwan. Atmos. Res., 99: 67-79. Atmos. Environ. 45:2651-2662. Cheung, K., Daher, N., Kama, W., Shafer, M. M., Ning, Z., Schauer, J. J., Sioutas, C. (2011). Spatial and temporal variation of chemical composition and mass closure of ambient coarse particulate matter (PM10-2.5) in the Los Angeles area. Chien, C.L., Iswara, A. P., Liou, Y. L., Wang, B. T., Chang, J. C., Hung, Y. H., and Tsai, C. J. (2015). A real-time monitoring system for soluble gas pollutants and it’s application for determining the control efficiency of packed towers. Sep. Purif. Technol., 154: 137-148. Clegg, S. L., Pitzer, K. S., and Brimblecombe, P. (1992). Thermodynamics of multicomponent, miscible, ionic solutions. II. Mixture including unsymmetrical electrolytes. J. Phys. Chem., 96: 9470-9479. Colbeck, I., and Harrison, R. M. (1984). Ozone-Secondary Aerosol-Visibility Relationships in North-West England. Sci. Total Environ., 34: 87-100. Dikaiakos, J. G., Tsitouris, G. G., Sisjos, P. A., Melissos, D. A., and Nastos, P. (1990). Rainwater composition in Athens, Greece. Atmos. Environ., 24B: 171-176. Fountoukis, C., and Nenes, A. (2007). ISORROPIA II: a computationally efficient thermodynamic equilibrium model for K+-Ca2+-Mg2+-NH4+-Na+-SO42−-NO3- -Cl−-H2O aerosols. Atmos. Chem. Phys., 7: 4639-4659. Fountoukis, C., Nenes, A., Sullivan, A., Weber, R., Reken, T. V., Fischer, M., Matias, E., Moya, M., Farmer, D., and Cohen, R. C. (2009). Thermodynamic characterization of Mexico City aerosol during MILAGRO 2006. Atmos. Chem. Phys., 9: 2141-2156. Guo, H., Liu, J., Froyd, K. D., Roberts, J. M.,Veres, P.R., Hayes, P. L., Jimenez, J. L., Nenes, A., and Weber, R. J. (2017). Fine particle pH and gas–particle phase partitioning of inorganic species in Pasadena, California, during the 2010 CalNex campaign. Atmos. Chem. Phys., 17: 5703–5719. Hamer, W. J. and Wu, Y. C. J. (2009). Osmotic Coefficients and Mean Activity Coefficients of Uni-univalent Electrolytes in Water at 25°C. Phys. Chem. Ref. Data. 1:1047. Han, B., Zhang, R., Yang, W., Bai, Z., Ma, Z., and Zhang, W. (2016). Heavy haze episodes in Beijing during January 2013: Inorganic ion chemistry and source analysis using highly time-resolved measurements from an urban site. Sci. Total Environ., 544: 319-329. Heintzenberg, J. (1989). Fine particles in the global troposphere A review. Tellus., 41B: 149-160. Hennigan, C. J., Sullivan, A. P., Fountoukis, C. I., Nenes, A., Hecobian, A., Vargas, O., Peltier, R. E., Hanks, A. T. C., Huey, L. G., Lefer, B. L., Russell, A. G., and Weber, R. J. (2008). On the volatility and production mechanisms of newly formed nitrate and water soluble organic aerosol in Mexico City. Atmos. Chem. Phys., 8: 3761–3768. Hildemann, L. M., Russell, A. G., and Cass, G. R. (1984). Ammonia and nitric acid concentrations in equilibrium with atmospheric aerosols: Experiment vs theory. Atmos. Environ. 18:9:1737-1750. Huang, X., Qiu, R., Chan, C. K., and Kant, P. R. (2011). Evidence of high PM2.5 strong acidity in ammonia-rich atmosphere of Guangzhou, China: Transition in pathways of ambient ammonia to form aerosol ammonium at [NH4+]/[SO4 2–]=1.5. Atmos. Res., 99: 488-495. Hueglin, C., Gehrig, R., Baltensperger, U. Gysel, M., Monn, C., and Vonmont, H. (2005). Chemical characterisation of PM2.5, PM10 and coarse particles at urban, near-city and rural sites in Switzerland. Atmos. Environ., 39: 637-651. Jacobson, M. Z., Tabazadeh, A., and Turco, R. P. (1996). Simulating equilibrium within aerosols and nonequlibrium between gases and aerosols. J. Geophys. Res., 101:9079-9091. Karydis, V. A., Tsimpidi, A. P., Fountoukis, C., Nenes, A., Zavala, M., Lei, W., Molina, L. T., and Pandis, S. N. (2010). Simulating the fine and coarse inorganic particulate matter concentrations in a polluted megacity. Atmos. Environ., 44: 608-620. Kim, Y. P., Seinfeld, J. H., and Saxena, P. (1993). Atmospheric gas-aerosol equilibrium I. Thermodynamic model. Aerosol Sci.Technol., 19: 157-181. Li, H., Zhang, Q., Zheng, B., Chen, C., Wu, N., Guo, H., Zhang,Y., Zheng, Y., Li, X., and He, K. (2018). Nitrate-driven urban haze pollution during summertime over the North China Plain. Atmos. Chem. Phys., 18: 5293–5306. Li, W. J., Shao, L. Y., and Buseck, P. R. (2010). Haze types in Beijing and the influence of agricultural biomass burning. Atmos. Chem. Phys., 10: 8119-8130. Lin, Y. C., Cheng, M. T., Ting, W. Y., and Yeh, C. R. (2006). Characteristics of gaseous HNO2, HNO3, NH3 and particulate ammonium nitrate in an urban city of Central Taiwan. Atmos. Environ., 40: 4725-4733. Makar, P. A., Bouchet, V. S., and Nenes, A. (2003). Inorganic chemistry calculations using HETV-a vectorized solver for the SO42--NO3--NH4+ system based on the ISORROPIA algorithms. Atmos. Environ., 37: 2279–2294. Marple, V. A., Rubow, K. L., and Behm, S. M. (1991). A Microorifice Uniform Deposit Impactor (MOUDI): Description, Calibration, and Use. Aerosol. Sci. Technol., 14:434-446. Martini, F. M. S., West, J. J., Foy, B., Molina, L. T., Molina, M. J., Sosa, G., McRae, G. J. (2005). Modeling Inorganic Aerosols and Their Response to Changes in Precursor Concentration in Mexico City. J. Air & Waste Manage. Assoc. 55:803–815. Meissner, H. P., Kusik, C. L., Tester, J. W. (1972). Activity Coefficients of Strong Electrolytes in Aqueous Solution-Effect of Temperature. AlChE J. 18:3:661-662. Meng, Z., and J. H. Seinfeld (1996). Timescales to achieve atmospheric gas-aerosol equilibrium for volatile species, Atmos. Environ., 30: 2889-2900. Metzger, S. M., Dentener, F. J., Lelieveld, J., and Pandis, S. N. (2002). Gas/aerosol partitioning I: a computationally efficient model. J. Geophys. Res., 107: 4312. Metzger, S., Mihalopoulos, N., and Lelieveld, J. (2006). Importance of mineral cations and organics in gas-aerosol partitioning of reactive nitrogen compounds: case study based on MINOS results. Atmos. Chem. Phys., 6: 2549-2567. Morino, Y., Kondo, Y., Takegawa, N., Miyazaki, Y., Kita, K., Komazaki, Y., Fukuda, M., Miyakawa, T., Moteki, N., and Worsnop, D. R. (2006). Partitioning of HNO3 and particulate nitrate over Tokyo: Effect of vertical mixing. J. Geophys. Res., 111, D15215. Moya, M., Ansari, A. S., and Pandis, S. N. (2001). Partitioning of nitrate and ammonium between the gas and particulate phases during the 1997 IMADA-AVER study in Mexico City. Atmos. Environ., 35: 1791-1804. Moya, M., Pandis, S. N., and Jacobson, M. J. (2002). Is the size distribution of urban aerosols determined by thermodynamic equilibrium? An application to Southern California. Atmos. Environ., 36: 2349-2365. Mozurkewich, M. (1993). The dissociation constant of ammonium nitrate and its dependence on temperature, relative humidity and particle size. Atmos. Environ., 27:2: 261-270. Nenes, A., Pandis, S. N., and Pilinis, C. (1998). ISORROPIA: A new thermodynamic equilibrium model for multiphase multicomponent inorganic aerosols. Aquat. Geochem., 4: 123-152. Nenes, A., Pilinis, C., and Pandis, S. N. (1999). Continued development and testing of a new thermodynamic aerosol module for urban and regional air quality models. Atmos. Environ., 33: 1553-1560. Ohta, S., and Okita, T. (1990). A Chemical Characterization of Atmospheric Aerosol in Sapporo. Atmos. Environ., 24A: 4: 815 822. Okuyama, K., Kousaka, Y., and Motouchi, T. (1984). Condensationa l Growth of Ultrafine Aerosol Particles in a New Particle Size Magnifier. Aerosol Sci. Technol., 3: 353–366. Rard, J. A., Habenschuss, A., and Spedding, F. H. A review of the osmotic coefficients of aqueous calcium chloride at 25℃. (1977). J. Chem. Eng. Data. 22: 2: 180-186. Samara, C., Tsitouridou, R., and Balafoutis, C. (1992). Chemical composition of rain in Thessaloniki, Greece, in relation to meteorological conditions. Atmos. Environ., 26B: 359-367. Sanusi, A., Wortham, H., Millet, M., and Mirabel, P. (1996). Chemical Composition of Rainwater in Eastern France. Atmos. Environ., 30: 1: 59-71. Saxena, P. and Peterson. T. W. (1981). Thermodynamics of multicomponent electrolytic aerosols. J. Colloid. Interf. Sci., 79:2:496-510. Saxena, P., Seigneur, C., and Peterson. T. W. (1983). Modeling of multiphase atmospheric aerosols. Atmos. Environ., 17:7:1315-1329. Schiferl, L. D., Heald, C. L., Nowak, J.B., Holloway, J. S., Neuman, J. A., Bahreini, R., Pollack, I. B., Ryerson, T. B., Wiedinmyer, C., and Murphy, J. G. (2014). An investigation of ammonia and inorganic particulate matter in California during the CalNex campaign. Res. Atmos., 119: 1883-1902. Seinfeld, J.H., and Pandis, S.N. (1998). Atmospheric Chemistry and Physics: from Air Pollution to Climate Change. John Wiley & Sons, Inc., New York Seinfeld, J.H., and Pandis, S.N. (2006). Atmospheric Chemistry and Physics: from Air Pollution to Climate Change Second Edition. John Wiley & Sons, Inc., New York. Shon, Z.H., Kim, K. H., Song, S. K., Jung, K., Kim, N. J., and Lee, J. B. (2012). Relationship between water-soluble ions in PM2.5 and their precursor gases in Seoul megacity. Atmos. Environ., 59: 540-550. Stelson, A. W., and Seinfeld, J. H. (1982). Thermodynamic prediction of the water activity, NH4NO3dissociation constant, density and refractive index for the NH4NO3-(NH4)2SO4-H2O system at 25°C, Atmos. Environ. 16: 2507-2514. Stelson, A.W., and Seinfeld, J.H. (1982). Relative Humidity and Temperature Dependence of the Ammonium Nitrate Dissociation Constant. Atmos. Environ., 16:5:983-992. Stokes, R. H., and Robinson, R. A. (1966). Interactions in Aqueous Nonelectrolyte Solutions. I. Solute-Solvent Equilibria. J. Phys. Chem.,70:7:2126-2131. Sudheer, A.K., and Rengarajan, R. (2015). Time-resolved inorganic chemical composition of fine aerosol and associated precursor gases over an urban environment in western India: Gas-aerosol equilibrium characteristics. Atmos. Environ., 109: 217-227. Tang, X., Zhang, X., Ci, Z., Guo, J., and Wang, J. (2016). Speciation of the major inorganic salts in atmospheric aerosols of Beijing, China: Measurements and comparison with model. Atmos. Environ., 133: 123-134. Trebs, I., Metzger, S., Meixner, F. X., Helas, G., Hoffer, A., Rudich, Y., Falkovich, A. H., Moura, M. A. L., Silva Jr., R. S., Artaxo, P., Slanina, J., and Andreae, M. O. (2005). The NH4+-NO3--Cl--SO42--H2O aerosol system and its gas phase precursors at a pasture site in the Amazon Basin: How relevant are mineral cations and soluble organic acids? J. Geophys. Res. VOL. 110:D07303. Tsai, C. J., Lin, G. Y., and Chen, S.C. (2008). A Parallel Plate Wet Denuder for Acidic Gas Measurement. Wiley InterScience. (www.interscience.wiley.com). Tsai, J. H., Lai, W. F., and Chiang, H. L. (2013). Characteristics of particulate constituents and gas precursors during the episode and non-episode periods. J. Air & Waste Manage. Assoc.2162-2906. Weber, R. J., Orsini, D., Daun, Y., Lee, Y. N., Klotz, P. J., and Brechtel, F. (2001). A Particle-into-Liquid Collector for Rapid Measurement of Aerosol Bulk Chemical Composition. Sci. Technol., 35:3, 718-727. Wei, L. F., Duan, J.C., Tan, J. H., Ma, Y. L., He, K. B., Wang, S. X., Huang, X. F., and Zhang, Y. X. (2015). Gas-to-particle conversion of atmospheric ammonia and sampling artifacts of ammonium in spring of Beijing. Sci China Earth Sci., 58: 3: 345-355. Wexler, A. S., and J. H. Seinfeld (1990). The distribution of ammonium salts among a size and composition dispersed aerosol, Atmos. Environ., 24: 1231-1246. Wexler, A. S., and Seinfeld, John. H. (1991). Second-generation inorganic aerosol model. Atmos. Environ. 25:12:2731-2748. Yao, X., Chan, C.K., Fang, F., Cadle, S., Chan, T., Mulawa, P., He, K., and Ye, B. (2002). The water-soluble ionic composition of PM2.5 in Shanghai and Beijing, China. Atmos. Environ., 36: 4223-4234. Yao, X., Ling, T. Y., Fang, M., and Chan, C.K. (2006). Comparison of thermodynamic predictions for in situ pH in PM2.5. Atmos. Environ., 40: 2835-2844. Yu, S., Dennis, R., Roselle, S., Nenes, A., Walker, J., Eder, B., Schere, K., Swall, J., and Robarge, W. (2005). An assessment of the ability of three-dimensional air quality models with current thermodynamic equilibrium models to predict aerosol NO3- , J. Geophys. Res., 110, D07S13, doi:10.1029/2004JD004718. Zanobetti, A., Schwartz, J., and Dockery, D. W. (2000). Airborne particles are a risk factor for hospital admissions for heart and lung disease. EHP., 108: 1071-1082. Zhang, T., Claeys, M., Cachier, H., Dong, S., Wang W., Maenhaut, W., and Liu, X. (2008). Identification and estimation of the biomass burning contribution to Beijing aerosol using levoglucosan as a molecular marker. Atmos. Environ., 42: 7013-7021. Zhou, J. J., Shi, J. H., Li, L. P., Yao, X. H., and Gao, H. W. (2015). Concentration of Acidic Gases, Ammonia and Related Water-Soluble Ions in PM2.5 and Gas-Particle Partitioning in Qingdao. Environ. Sci., 36: 9: 3135-3143. 行政院環保署環境檢驗所,環境檢驗方法偵測極限測定指引,NIEA-PA107,民國94年。 行政院環保署環境檢驗所,環境檢驗品管分析執行指引,NIEA-PA104,民國94年。 行政院環保署環境檢驗所,環境檢驗檢量線製備及查核指引,NIEA-PA103,民國94年。 蔡春進,104年度「新竹市垃圾焚化廠周界空氣細懸浮微粒(PM2.5)檢測計畫」,期末報告,民國105年。 蔡春進,104年度「辦理都會區空氣中細懸浮微粒即時化學成分調查計畫」,期中報告,EPA-104-1602-02-01,民國104年。
|