參考文獻
中文文獻
1.龔平、曾心傳、嚴尊國,2001,發震時間的指數分佈、Gamma分佈和Weibull分佈之間關係的研究,西北地震學報,數理统計與管理。21(2) : P315。
2.範琦,2003,Weibull分佈的資訊熵在地震預報中的應用研究 ,西北地震學報。25(2) : P315.75。
3.黃勁松、王高,2008,Weibull分佈在新產品市場滲透研究中的應用拓展,數理統計與管理。27(2) : 320-328。
4.鄭傳奇、楊勁,2001,應用WEIBULL分佈函數建立非房室線性藥動學模型,廣東藥學院學報。17(3):P213
5.陳春香,2007,壽險業房貸提前清償之風險-韋伯分配之應用,碩士論文,國立高雄第一科技大學。6.瓦拉第.韋伯,2007,「新韋伯分析手冊第四版」,鼎茂出版社。
英文文獻
[1]Ahmad, I. A. and Fan, Y. (2001) , “Optimal bandwidth for kernel density estimators of functions of Observations, ”Statistics and Probability Letter, 513, 245-251.
[2]B. U. Park and W. C. Kim (1994) , “Asymptotically best bandwidth selectors in kernel density estimation ,”Statistics and Probability Letters, 19, 119-127.
[3]Balakrishnan, N. and Kocherlakota, S. (1985) , “On the double Weibull distribution: Order statistics and estimation ,”Sankhya, 47, 161-176.
[4]Basu, A., and Lindsay, B. G. (1994) , “Minimum Disparity Estimation for Continuous Models :Efficiency, Distributions and Robustness ,”Annals of the Institute of Statistical Mathematics,46, 638-705.
[5]Beran, R. J. (1977) , “Minimum Hellinger Distance Estimates for Parametric Models ,”The Annals of Statistics, 5, 445-463.
[6]Bowman, K.O. and Shendon, L.R. (2000) , “Maximum likelihood and Weibull distribution,” Far East J. Theory Statist.
[7]Cohen, A. C. (1965) , “The maximum likelihood estimation in the Weibull distribution,”Technometrics, 8, 579-588
[8]Cohen, A. C. (1973) , “The reflected Weibull distribution,” Technomertrics, 15, 867-873
[9]Cohen, A. C., Whitten, B.J. and Ding Y. (1984) , “ Modified moment estimation for the three-parameter Weibull distribution,” J. Quality Technology, 17, (2), 92-99.
[10]Cutler, A., Corderon, B. and O. I. (1996) , “Minimum Hellinger Distance Estimation for Finite Mixture Models,” Journal of the American Statistical Association, 91, 1716-1723.
[11]Devroye, L. (1983) , “ The equivalence of weak, strong and complete convergence in L1 for kernel density estimates [J] , ” Annals of Statistics, 11. 896-904.
[12]Flygare, M. E., Austin, J. A. and Buckwalter, R. M. (1985) , “ Mmaximum likelihood estimation for the 2-parameter Weibull distribution based on interval data, ”IEEE Transactions on Reliability,Vol R-34,1,57-59
[13]Gumbel, E.J. (1958) . Statistics of Extremes, Columbia University Press, New York.
[14]Huang, J. S. and Wang, G. (2008) , “ Application Extension of Weibull Distribution for New Product Market Penetration Research, ”Application of Statistics and Management .
[15]Johnson, N. L., Kotz, S. and Balakrishnan, N. “Cntinuous univariate distributions, ”1,Second Edition, John Wiley&Sons, New York.
[16]Kanazawa, Y. (1993) , “Hellinger distance and Kullback-leibler loss for the kernel density estimator, ”Statistics and Probability Letters, 18, 315-321.
[17]Lindsay, B. G. (1994) , “Efficiency versus Robustness: The Case for Minimum Hellinger Distance and Related Methods,”The Annals of Statistics, 22, 1081-1114.
[18]M. M. Brooks (1991) , “Asymptotic optimality of the least-squares cross-validation bandwidth for kernel estimates of intensity functions, ”Stochastic Processes and Their Applications, 38, 157-165
[19]Mudholkar, G.S. and Kollia.CD.(1994) , “Generalized Weibull family:A structural analysis, ”Communicaltions in Satistics-Series A:Theory and Methods,25,1149-1171
[20]Murthy, D. N. P., Xie, M.M. and Jiang, R.(2004).Weibull Models. John Wiley and Sons, Hoboken, New Jersey.
[21]P. Hall and J. S. Marron(1988) ,“Choice of kernel order in density estimation, ” Annals of Statistics, 16, 161-173.
[22]Parzen, E. (1962) ,“ On estimation of a probability density function and mode, ” Ann.Math.Staist., 33, 1065-1076
[23]Powel, J. L. and Stoker, T. M. (1996) ,“ Optimal bandwidth choice for density-weighted averages, ” Journal of Econometrics, 75, 291-316
[24]Ranneby B. (1984) , “The maximum spacing method: an estimated method related to the maximum likelihood method, ” Scand. J. Statists. 11, 93-112.
[25]Rosenblatt, M. (1956) , “ Remarks on some nonparametric estimates of a density function , ”Ann.Math.Statist.27, 832-837.
[26]Royland, W. D. (1972) , “ Maximum Likelihood Estimation of the Parameters of the Weibull distribution by Modified , ”IEEE transaction on reliability , Vol R-21,2,89-93
[27]Rudemo, M. (1982) , “ Empirical choice of histograms and kernel density estimators, ”Scand. J. Statist. 9, 65-78
[28]S. J. Sheather, (1990) , “ Kernel quantile estimation, ”Journal of the American Statistical Association, 85, 410-419
[29]Sarhan and Zaindin (2008) , “Parameters Estimation of the Modified Weibull Distribution, ”Applied Mathematical Sciences, Vol. 3, 11, 541 - 550
[30]Silverman, B, W. (1986) , Density Estimation for Statistics and Data Analysis, Chapman and Hall.
[31]Simpson, D. G. (1987) ,“Minimum Hellinger Distance Estimation for the Analysis of Count Data,”Journal of the American Statistical Association, 82, 807-807.
[32]Stefan Stefanescu: “Estimating the three parameters of Weibull model with restrictive location values, ” Economic Computation and Economic Cybernetics Studies and Research, XXXV, 1-4, 91-99.
[33]Terrell, G. R. (1990) , “The maximum smoothing principle in density estimation, ” Journal of American Statistics Association, 85, 470-477
[34]Turlach, B.A. (1993) , “Bandwidth Selection in Kernel Density Estimation: A Review,CORE and Institute de Statistique
[35]Wolfowitz, J., (1952) , “ Consistent Estimation of the parameter of a Linear Structural Relation, ” Skandinavisk Aktuarietidskrift, 35, 132-157.
[36]Wolfowitz, J., (1954) , “Estimation by the Minimum Distance Method in Nonparametric Difference Equations, ” Annals of Mathematical Statistics, 25,
[37]W. J. Padgett, (1987) , “Asymptotically optimal bandwidth selection for kernel density estimators from randomly right censored samples, ” Annals of Statistics, 15, 1520-1535
[38]Wand, M. P. and Jones, M. C. (1995), Kernel smoothing. Chapman and Hall, London.
[39]Weibull, W. (1939) , “A statistical theory of the strength of material, ” Ingeniors Vetenskaps Akakemien Handlingar ,15:293-297.
[40]Yang, S. (1993) , “ A central limit theorem for the integrated square error of the kernel density estimators with randomly censored data, ”J. Statist. Plan. Inference, 37: 127-143.