跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.213) 您好!臺灣時間:2025/11/09 23:37
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:方瀚萩
研究生(外文):Fang,Han-Chiou
論文名稱:HEVC之快速框內預測演算法與設計
論文名稱(外文):ast Intra Prediction Algorithm and Design for High Efficiency Video Coding
指導教授:張添烜
指導教授(外文):Chang, Tian-Sheuan
口試委員:郭峻因彭文孝
口試委員(外文):Guo, Jiun-InPeng, Wen-Hsiao
口試日期:2014-11-07
學位類別:碩士
校院名稱:國立交通大學
系所名稱:電子工程學系 電子研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:103
語文別:英文
論文頁數:103
中文關鍵詞:框內預測自適應增強
外文關鍵詞:HEVC Intra PredictionMachine learningAdaBoost
相關次數:
  • 被引用被引用:0
  • 點閱點閱:284
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
High Efficiency Video Coding (HEVC) 相較於之前的標準H.264 來說, 因為更多的預測單位大小和更多的框內預測模式種類,使得在進行框內預測來預測值的時候複雜度大幅的提升,為了減低硬體上的負擔和編碼上耗費的時間,這篇論文提出了快速演算法和設計來達到目的,我們所提出的方法包括減少預測單位大小的種類,以及減少框內預測時的預測模式來達到我們的目的。
這個方法大致上分為兩個部分,首先是對預測單元大小種類的減少,利用梯度特徵值先將預測單元大小種類減少至兩種後,再利用SATD值的分佈再將預測單元大小種類減少至一種。。第二個部分是運用一個簡單的三段式的框內預測模式選擇的演算法來對預測模式的數量來做削減。我們提出的方法在RD-rate 平均增加3.9 %, 但是相較於 HM-9.0rc的全框內編碼原始設定來說大約節省79 %的編碼時間。
在硬體的部分我們為RMD 處理程序設計了新的排程,。RMD 部分的硬體若以TSMC 90nm的技術合成,大約需要224.6K邏輯閘的數目量及1.762K位元組的晶片內建記憶體,而其可在工作頻率為270MHz的情況下,滿足處理畫面大小為4K×2K,每秒30張畫面的影片規格。

When compared to previous video standard H.264, High Efficiency Video Coding (HEVC) has significant computation complexity because of more PU size types and more intra prediction modes. To achieve real time encoding demands, this paper proposes a fast intra prediction algorithm and its design.
The fast algorithm can be divided into two parts. The first part is the fast intra prediction unit (PU) size selection that is a gradient weight controlled block size selection to reduce PU sizes to two. These two PU sizes will be reduced to one for more complexity reduction based on the SATD distribution. The required intra prediction modes are reduced by almost half by s simple three-step algorithm. The simulation results show that the proposed algorithm can save 79% encoding time on average for all-intra main case compared to the default encoding scheme in HM-9.0rc1, with 3.9% BD-rate increases
With TSMC 90 nm CMOS technology and 270 MHz operating frequency, the gate count of this work is about 224.608K and the memory usage is 1.762 Kbytes to support the 4k×2k 30 fps video encoding.

Contents
Contents IV
List of Figures VI
List of Tables VIII
Chapter 1. Introduction 1
1.1 Motivation 1
1.2 Thesis Organization 2
Chapter 2. Overview of HEVC Standard 3
2.1 Overview of HEVC 3
2.2 Coding Structure in HEVC 5
2.3 Intra Prediction in HEVC 7
2.4 Challenges in HEVC Implementation 12
Chapter 3. Proposed Fast Intra Prediction Algorithm 14
3.1 Introduction of Related Work 14
3.2 Fast Intra Block Size Selection Algorithm 16
3.2.1 Analysis of Skipping Intra Block Size 16
3.2.2 Illustration for used features 20
3.2.3 Fast Intra Block Size Selection Algorithm 31
3.3 Fast Intra Mode Selection Algorithm 64
3.4 Overall Fast Intra Prediction Algorithm 70
3.5 Summary 72
Chapter 4. Hardware Design for HEVC Encoder 73
4.1 System Analysis 73
4.2 Overall Encoder Architecture 75
4.3 RMD Stage Scheduling and Architecture 76
4.4 Synthesis Results 82
4.5 Summary 84
Chapter 5. Conclusion and Future Work 85
5.1 Conclusion 85
5.2 Future work 86
Appendix A . Introduction to AdaBoost Algorithm 87
A.1 Machine Learning Methods 87
A.2 AdaBoost Algorithm 88
A.3 AdaBoost Model Use Example 90
Appendix B . AdaBoost Model 93
Reference 99

Reference
[1] B. Bross, W.-J. Han, J.-R. Ohm, G. J. Sullivan, Y.-K. Wang, and T. Wiegand, “High Efficiency Video Coding (HEVC) text specification draft 10 (for FDIS &; Last Call),” JCTVC-L1003, Geneva, CH, 14-23 Jan. 2013.
[2] D. Grois and D. Marpe “Performance Comparison of H.265/MPEG-HEVC, VP9, and H.264/MPEG-AVC Encoders” in PCS, 2013.
[3] I.-K. Kim, K. McCann, K. Sugimoto, B. Bross, and W.-J. Han, “HM9: High Efficiency Video Coding (HEVC) Test Model 15 Encoder Description”, JCTVC-Q1002, Valencia, 27 March to 4 April. 2014.
[4] J.-H. Min, S. Lee, I.-K. Kim, W.-J. Han, J. Lainema, and K. Ugur, “Unification of the Directional Intra Prediction Methods in TMuC,” JCTVC-B100, Geneva, CH, 21-28 Jul. 2010.
[5] K. McCann, et al., “Samsung’s response to the call for proposals on video compression technology,” JCTVC-A124, Apr. 2010.
[6] K. Ugur, K.R. Andersson and A. Fuldseth, “Description of video coding technology proposal by Tandberg, Nokia, Ericsson,” JCTVC-A119, Apr. 2010.
[7] S. Kanumuri and F. Bossen, “CE6.e/f: Planar Mode Experiments and Results,” JCTVC-E321, Geneva, CH, 16-23 Mar. 2011.
[8] Y. Piao, J.H. Min, J. Chen, “Encoder improvement of unified intra prediction,” JCTVC-C207, Oct. 2010.
[9] L. Zhao, et al., “Further Encoder Improvement of intra mode decision,” JCTVC-D283, Jan. 2011.
[10] HEVC reference software HM-9.0rc1, 2012.
[11] E. Maani and A. Tabatabai, “Intra Mode Coding Using Logical Mode Numbering,” JCTVC-H0407, San José, CA, USA, 1-10 Feb. 2012.
[12] F. Bossen, B. Bross, K. Sühring, and D. Flynn, “HEVC complexity and implementation analysis,” IEEE Trans. Circuits Syst. Video Technol., vol. 22, no. 12, pp. 1684–1695, Dec. 2012.
[13] K. Choi and E.S. Jang, “Fast coding unit decision method based on coding tree pruning for high efficiency video coding”, Optical Engineering, vol. 51, no. 3, 2012.
[14] S. Cho and M. Kim, “Fast CU Splitting and Pruning for Suboptimal CU Partitioning in HEVC Intra Coding,” IEEE Transactions on Circuits and Systems for Video Technology, 2013.
[15] Y. Kim, D. Jun, S. Jung, and J. Choi, “A Fast Intra Prediction Method Using Hadamard Transform in High Efficiency Video Coding,” in Proceeding of SPIE 8305, Visual Information Processing and Communication III, Feb. 2012.
[16] T. Zhang, G. Tian, and S. Goto, “A Frequency-Based Fast Block Type Decision Algorithm for Intra Prediction in H.264/AVC High Profile,” in Proceeding of IEEE Asia Pacific Conference on Circuits and Systems, Nov. 2008.
[17] Y.-H. Huang, T.-S. Ou, and H. H. Chen, “Fast Decision of Block Size, Prediction Mode, and Intra Block for H.264 Intra Prediction,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 20, no. 8, pp. 1122-1132, August 2010.
[18] J. He, X. He, X. Li and L. Qing, “Fast Inter-Mode Decision Algorithm for High-Efficiency Video Coding Based on Textural Features”, Journal of Communications, vol. 9, no. 5, 2014.
[19] H. Sun, D. Zhou and S. Goto, “A low-complexity hevc intra prediction algorithm based on level and mode filtering”, In ICME, 2012, pp. 1085-1090.
[20] G. Tian and S. Goto, “Content adaptive prediction unit size decision algorithm for HEVC intra coding”, In ICME, , 2012, pp. 405-408
[21] X. Shen, L. Yu and J. Chen, “Fast coding unit size selection for HEVC based on Bayesian decision rule”, Picture Coding Symposium (PCS), 2012, pp.453-456.
[22] C. Bai and C. Yuan, “Fast coding tree unit decision for HEVC intra coding”, in ICCE-China Workshop, Apr. 2013, pp.28-31
[23] L. Shen, Zhang. L and Z. Liu, “Effective CU size decision for HEVC intra coding”, IEEE Trans. Multimedia, vol. 15, no. 2, 2014.
[24] L. Shen, Z. Zhang and P. An, “Fast CU size decision and mode decision algorithm for HEVC intra coding”, IEEE Transactions. Consumer Electronics, vol. 59, no. 1, pp. 207-213, 2013.
[25] H. Huang, Y. Zhao, C. Lin and H. Bai, “Fast bottom-up pruning for HEVC intraframe coding”, In Visual Communications and Image Processing (VCIP) 2013, 2013, pp. 1-5.
[26] C.-K. Chiang, W.-H. Hwang, C. Zhuang, et al, “Fast H.264 encoding based on statistical learning”, IEEE Transactions on Circuits and Systems for Video Technology, vol. 29, no.9, 2011, pp.1304-1315.
[27] Feng. Pan, X. Lin, “Fast Mode Decision Algorithm for Intraprediction in H.264/AVC Video Coding”, IEEE Transactions on Circuits and Systems for Video Technology, vol. 15, no. 7, pp.813- 822, 2005.
[28] C.-C. Cheng and T.-S. Chang, “Fast Three Step Intra Prediction Algorithm for 4×4 Blocks in H.264,” in Proceeding of IEEE International Symposium on Circuits and Systems, May 2005.
[29] F. Bossen, “Common Test Conditions and Software Reference Configurations,” JCTVC-J1100, Stockholm, SE, 11-20 Jul. 2012.
[30] M. Khan, M. Shafique, and J. Henkel, “An adaptive complexity reduction scheme with fast prediction unit decision for HEVC intra encoding,” 20th IEEE International Conference on Image Processing (ICIP), Sept. 2013, pp. 1578-1582
[31] Y.-C. Ting and T.-S. Chang, “Gradient-based PU size selection for HEVC intra prediction” IEEE International Symposium. Circuit and Systems, 2014, pp. 1929-1932.
[32] V. Kumar et al., “Fast Intra Mode Decision Based on Block Orientation in High Efficiency Video Codec (HEVC)”, IEEE International Symposium. Computer, Consumer and Control, Jun 2014, pp. 506-511.
[33] B. Chung, J. Kim and C. Yim, “Fast rough mode decision method based on edge detection for intra coding in HEVC”, In ISCE 2014, , pp.1-2, Jun. 2014.
[34] Y.-C. Ting, “Fast Intra Prediction Algorithm and Design for Real Time QFHD High Efficiency Video Coding,” Thesis of Master of Science in Electronics Engineering, National Chiao-Tung University, Taiwan, Aug. 2013.
[35] J. Zhu, et al, “HDTV1080p HEVC Intra encoder with source texture based CU/PU mode pre-decision”, in ASP-DAC, Jan. 2014, pp. 367-372.
[36] Y.-C. Ting, “Fast Intra Prediction Algorithm and Design for Real Time QFHD High Efficiency Video Coding”, Thesis of Master of Science in Electronics Engineering, National Chiao-Tung University, Taiwan, August 2013.
[37] Wu, V. Kumar, J.R. Quinlan, J. Ghosh, et al, “Top 10 Algorithms in Data Mining,” Knowledge and Information Systems, vol. 14, no. 1, 2008. pp. 1-37.
[38] TG. Dietterich, “Machine-learning research”, AI Mag, vol. 18, no. 4, 1997, pp. 97-136.
[39] Freund, Yoav, and Robert E. Schapire. “A desicion-theoretic generalization of on-line learning and an application to boosting,” Computational learning theory. Springer Berlin Heidelberg, 1995.
[40] A. Vezhnevets, “GML AdaBoost Matlab Toolbox” , available at : http://graphics.cs.msu.ru/en/science/research/machinelearning/AdaBoosttoolbox
(accessed 30 October 2014)
[41] R.E. Schapire and Y. Singer, “Improved boosting algorithms using confidence-rated predictions”, Machine Learning, vol. 37, no. 3, Dec. 1997, pp.297-336.
[42] J. Friedman, T. Hastie, and R. Tibshirani, “Additive logistic regression: A statistical view of boosting”, The Annals of Statistics, vol. 38, no. 2, Apr. 2000, pp.337–374.
[43] A. Vezhnevets and V. Vezhnevets. “Modest AdaBoost - teaching AdaBoost to generalize better”, Graphicon, 2005.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top