跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.176) 您好!臺灣時間:2025/09/09 12:17
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:葉翰融
研究生(外文):Han-Jung Ye
論文名稱:北南海陸坡沙丘地形之三維水下音傳之研究
論文名稱(外文):Study of Three-Dimensional Underwater Acoustic Propagation in the Continental Slope of South North China Sea with Sand Dunes
指導教授:陳琪芳陳琪芳引用關係
口試委員:王昭男楊穎堅苑梅俊
口試日期:2015-10-29
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:工程科學及海洋工程學研究所
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:104
語文別:中文
論文頁數:66
中文關鍵詞:水下音傳三維擾動沙丘移動聲源FOR3D同調性時間音傳損耗
外文關鍵詞:3D effectSand duneFOR3DCoherence timeTransmission Loss(TL)
相關次數:
  • 被引用被引用:1
  • 點閱點閱:145
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在北南海陸坡上,存在許多因海洋內波所造成的特殊地形-沙丘(Sand Dune)。這些特殊地形關係,當聲音在水下傳導時,會產生強烈的散射與耦合效應。本研究運用三種不同聲學模式(二維RAM、Nx2D及三維FOR3D)探討聲音在海床沙丘地形上之音傳特性及分析南海沙丘在同調時間內對水下聲音傳遞所造成的三維耦合效應。在數值模擬方面,預觀察水平方向音傳變化所造成的耦合效應(θ-coupling)故採用以三維拋物線方程式為基礎的三維數值(r, z, θ)來模擬。實驗聲源採用移動式聲源(EMATT)拍發訊號,並利用錨定串接收訊號。由於相位的擾動對聲壓能量會造成顯著影響,故模擬時須考慮複數聲壓之變化,並定義當複數聲壓之能量下降一分貝(dB)所需的這段時間,稱之為同調性時間(Coherence time)。
使用由美國海軍研究院(Naval Postgraduate School)合作之實驗室所提供之聲學實驗資料與本研究所得之數值模擬計算進行比對,發現其一,地形環境之改變對音傳損耗及同調性時間影響甚大; 其二,當聲源以接收器為圓心進行圓周運動時,由模擬與實驗均可發現,音傳損耗會隨沙丘地形之變化造成顯著之差異; 其三,當音傳路徑與沙丘走向垂直時,同調性時間越長,但從同調性時間裡,並不能看出三維效應; 其四,當音傳路徑與沙丘走向平行時,由FOR3D之結果可觀察出顯著之三維耦合效應。雖然模擬與實驗數據上,仍有不少差異值,但比對之下FOR3D仍與實驗資料趨勢較符合,未來若能加入更多的詳細的海洋環境條件,修改FOR3D內初始條件以及更新計算軟體上矩陣記憶體的限制,必能可更符合實際海域狀況。


On the continental slope of Northern South China Sea, there are many special terrain, Sand dune. Because of this special topography, when the sound conducts underwater, it will be affected by these sand dunes and cause strong scattering and coupling effects. In this study, three different acoustic models (2D: RAM, Nx2D, 3D: FOR3D) are used to investigate the acoustic characteristic on seabed-dune terrain, and analyze coupling effect caused by the conduction under South China Sea within the coherence time. In numerical simulation, we use three-dimensional value(r, z, θ) that based on three-dimensional parabolic equation to observe the coupling effect (θ-coupling), which produced by horizontal acoustic transformation. We used mobile sound source (EMATT) during the experiments, found that the phase perturbation will make significant impact on the variation of sound pressure level (SPL). To observe the phase perturbation need to notice the complex of sound pressure and the coherence time, which defined as the duration when SPL decreases 1dB.
From the comparison of simulation and experimental data. First, we found the topography of sand dunes will affect the TL and coherence time a lot. Second, the model and experiment display that there has significant difference in TL along with change of topography. Third, when the propagating way vertical with the sand dune, the coherence time is longer and can’t be find coupling effect. Forth, when the propagating way parallels with the sand dune, there has significant coupling effect from the simulation of FOR3D, In the future, plus more ocean environment, improving the initial condition in FOR3D, updating the software, correspond the actual situation of the ocean more.


誌謝 i
中文摘要 ii
ABSTRACT iii
目錄 iv
符號目錄 vi
圖目錄 vii
表目錄 x
第一章 緒論 1
1.1 研究動機 1
1.2文獻回顧 1
1.3目的與主要成果 4
1.4論文架構 4
第二章 研究方法 6
2.1 三維效應分類 6
2.2 拋物線方程式 7
2.3聲波互換理論 8
2.4 同調性時間(Coherence Time) 10
2.5 Matlab執行與應用 13
第三章台灣西南海域之海洋物理與聲學應用研究:2014年夏季實驗 17
3.1 實驗目的 17
3.2 實驗規劃 17
3.3 VLA錨錠串介紹 21
3.3.1地形資料 24
3.3.2水文資料 25
3.3.3聲學資料 26
第四章 聲學模擬之結果討論 27
4.1 沙丘之環境參數設定 27
4.2 聲納參數之設定 29
4.3初始條件差異的影響 30
4.4比較不同聲學模式之音傳損耗 31
4.5不同聲學模式下之同調性時間討論 37
第五章 實驗與模擬之結果討論 40
5-1模擬與實驗資料之音傳損耗比對 42
5-2 模擬與實驗資料之同調性時間比對 48
5-3 小結 50
第六章 結論與未來工作 52
參考文獻 53
附錄A Lee-Saad-Schultz(LSS)數學模式 56
附錄B 不同模擬下之同調性時間(Coherence Time) 62


[1]S. Boggs, "Sand-wave fields in Taiwan Strait," Geology, vol. 2, pp. 251-253, 1974.
[2]D. B. Reeder, B. B. Ma, and Y. J. Yang, "Very large subaqueous sand dunes on the upper continental slope in the South China Sea generated by episodic, shoaling deep-water internal solitary waves," Marine Geology, vol. 279, pp. 12-18, 2011.
[3]C.-S. Chiu, S. R. Ramp, C. W. Miller, J. F. Lynch, T. F. Duda, and T. Y. Tang, "Acoustic intensity fluctuations induced by South China Sea internal tides and solitons," Oceanic Engineering, IEEE Journal of, vol. 29, pp. 1249-1263, 2004.
[4]M. Schultz, D. Lee, and K. Jackson, "Application of the YALE sparse technique to solve the three-dimensional parabolic wave equation," Recent Progress in the Development and Application of the Parabolic Equation, 1983.
[5]F. D. Tappert, "The parabolic approximation method," in Wave propagation and underwater acoustics, ed: Springer, 1977, pp. 224-287.
[6]R. N. Baer, "Propagation through a three‐dimensional eddy including effects on an array," The Journal of the Acoustical Society of America, vol. 69, pp. 70-75, 1981.
[7]J. S. Perkins and R. N. Baer, "An approximation to the three‐dimensional parabolic‐equation method for acoustic propagation," The Journal of the Acoustical Society of America, vol. 72, pp. 515-522, 1982.
[8]D. Lee, Y. Saad, and M. H. Schultz, "An efficient method for solving the three-dimensional wide angle wave equation," DTIC Document1986.
[9]S. V. Richard, "Matrix iterative analysis," ed: Prentice-Hall, Englewood Cliffs, NJ, 1962.
[10]D. Lee and M. H. Schultz, Numerical ocean acoustic propagation in three dimensions: World Scientific, 1995.
[11]C. CHEN, Y.-T. LIN, and D. Lee, "A three-dimensional azimuthal wide-angle model for the parabolic wave equation," Journal of Computational Acoustics, vol. 7, pp. 269-286, 1999.
[12]L.-W. Hsieh, C.-F. Chen, M.-C. Yuan, and Y.-T. Lin, "Azimuthal limitation in 3D PE approximation for underwater acoustic propagation," Journal of Computational Acoustics, vol. 15, pp. 221-233, 2007.
[13]E. Shang and Y. Wang, "Acoustic travel time computation based on PE solution," Journal of Computational Acoustics, vol. 1, pp. 91-100, 1993.
[14]陳屛先, "海洋聲學傳播模組分析," National Taiwan University Department of Naval Architecture and Ocean Engineering., 1998.
[15]林志銘, "三維海洋聲音模組分析硏究," National Taiwan University Department of Naval Architecture and Ocean Engineering., 1999.
[16]劉孟竺, "三維海洋音傳與海床沙丘效應之研究," 國立臺灣大學工程科學及海洋工程學研究所學位論文, pp. 1-108, 2014.
[17]林正偉, "三維數值模擬之格點重訂技術," 國立臺灣大學工程科學及海洋工程學研究所學位論文, pp. 1-43, 2011.
[18]劉育維, "三維水下音傳局部卡氏座標模式," 國立臺灣大學工程科學及海洋工程學研究所學位論文, pp. 1-54, 2011.
[19]A. Newhall, L. Costello, T. Duda, J. Dunn, and G. Gawarkiewicz, "Preliminary acoustic and oceanographic observations from the ASIAEX 2001 South China Sea experiment," DTIC Document2001.
[20]M. S. C. W. Miller, C. S. Chiu, S. R. Ramp, "Characterizing the nonlinear internal wave climate in the northeastern South China Sea,," WHOI-2006-01 2006.
[21]D. Reeder, "Acoustic Propagation Studies in the Nonlinear Internal Wave Initiative (NLIWI) in the South China Sea (SCS)," DTIC Document2007.
[22]廖柏智, "孤立內波與沙波形成之數值模擬研究," 撰者, 2011.
[23]L. Y. Chiu and D. B. Reeder, "Acoustic mode coupling due to subaqueous sand dunes in the South China Sea," The Journal of the Acoustical Society of America, vol. 134, pp. EL198-EL204, 2013.
[24]M. D. Collins, "Users Guide for RAM Versions 1.0 and 1.0 p," Naval Research Lab, Washington, DC, vol. 20375, 1995.
[25]G. V. Frisk, "Ocean and seabed acoustics:a theory of wave propagation:Pearson Education," 1994.
[26]E. Kreyszig, "Advanced engineering mathematics," John Wiley & Sons, 2002.
[27]C. W. C. Miller, Ching-Sang;Reeder, D.Benjamin; Yang, Ying-Jang; Chiu,Linus;Chen,Chi-Fang, "Preliminary observations from the 2014 Sand Dunes experiment," 2014-10.
[28]K. V. Mackenzie, "Nine‐term equation for sound speed in the oceans," The Journal of the Acoustical Society of America, vol. 70, pp. 807-812, 1981.
[29]林穎聰, "ASIAEX 南海實驗中爆炸聲源之聲學反算," 國立台灣大學工程科學及海洋工程研究所博士論文, 2004.
[30]A. Turgut, B. Pasewark, M. Orr, J. Lynch, and C. S. Chiu, "Inversion of range‐dependent geoacoustic properties in South China Sea ASIAEx01 experimental site," The Journal of the Acoustical Society of America, vol. 113, pp. 2218-2218, 2003.
[31]F. B. Jensen, W. A. Kuperman, M. B. Porter, and H. Schmidt, Computational ocean acoustics: Springer Science & Business Media, 2011.
[32]A. D. PIERCE and D. LEE, "The influence of the reference wavenumber in computational ocean acoustics," Journal of Computational Acoustics, vol. 1, pp. 77-90, 1993.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top