|
[1] Norrbottens Jaernverk AB, “Manufacturing a hardened steel article”, Patent GB1490535, 1977 [2] G. Berglund, “The history of hardening of boron steel in northern Sweden”. in First International Conference on Hot Sheet Metal Forming of High-Performance Steel, Kassel, Germany, 2008, pp. 175–177 [3] T. Stohr, M. Merklein and J. Lechler, “Determination of frictional and thermal characteristics for hot stamping with respect to a numerical process design”, in First International Conference on Hot Sheet Metal Forming of High-Performance Steel, Kassel, Germany, 2008, pp. 293–300 [4] L.G. Aranda, Y. Chastel, J.F. Pascual and T.D. Negro, “Experiments and simulation of hot stamping of quenchable steels”, Advanced Technology of Plasticity, vol. 2, 2002, pp. 1135–1140 [5] M. Naderi, “Hot stamping of Ultra High Strength Steels”, Doctoral thesis, RWTH Aachen, 2007 [6] B. Joseph, M. Picat and F. Barbier, “Liquid metal embrittlement: A state-of-the-art appraisal”, The European Physical Journal Applied Physics, vol. 5, issue01, 1999, pp. 19-31 [7] R. Neugebauer, T. Altan, M. Geiger, M. Kleiner, and A. Sterzing, “CIRP Annals-Manufacturing Technology, vol. 55, issue 2, 2006, pp. 793–816 [8] C. W. Lee, D. W. Fan, I. R. Sohn, S. J. Lee and B. C. Cooman, Liquid Metal Induced Embrittlement of Zn-Coated Hot Stamping Steel, Metallurgical and Materials Transactions A, vol. 43, issue 13, 2012, pp. 5122-5127 [9] J. Kondratiuk, P. Kuhn, E. Labrenz, and C. Bischoff, “Zinc coatings for hot sheet metal forming: Comparison of phase evolution and microstructure during heat treatment”, Surface and Coating Technology, vol. 205, issue 17-18, 2011, pp. 4141–4153 [10] M. Abbasi, A. Saeed-Akbari, and M. Naderi, “The effect of strain rate and deformation temperature on the characteristics of isothermally hot compressed boron-alloyed steel”, Material Science and Engineering A, vol. 538, 2012, pp. 356–363 [11] D.W. Fan, R.B. Park, Y.R. Cho, and B.C. De Cooman, “Influence of Isothermal Deformation Conditions on The Mechanical Properties of 22MnB5 HPF Steel”, Steel Research International, vol. 81, 2010, pp. 292–298 [12] M. Gu, M.R. Notis and A.R. Marder, “Structure of As-Plated Electrodeposited Zinc--Iron Coatings”, Proc. of the International Conference on Zinc and Alloy Coated Steel Sheet (GALVATECH), 1989, p. 470 [13] C. Bories, J.P. Bonino and A. Rousset, “Structure and thermal stability of zinc-nickel electrodeposits”, J. Applied Electrochemistry, vol. 29, issue 9, 1999, pp. 1045-1051 [14] Schwartzman, The Great Soviet Encyclopedia (Print) (3rd ed.). New York: Macmillan, 1973 [15] K. Imai, Y. Yoshikawa, T. Toki, T. Nishibata, K. Uematsu, M. Uchihara, T. Takayama, “Properties of hot stamped galvannealed steel sheet”, SEAISI Quarterly (South East Asia Iron and Steel Institute), vol. 34, issue 4, 2005, pp. 47-53 [16] F. Jenner, M. Walter, R. Mohan Iyengar and R. Hughes, “Evolution of Phases, Microstructure, and Surface Roughness during Heat Treatment of Aluminized Low Carbon Steel”, Metallurgical and Materials Transactions A, vol. 41, issue 6, 2010, pp. 1554-1563 [17] F. Jenner, M. Walter, R. Mohan Iyengar and R. Hughes, “Evolution of phases and microstructure during heat treatment of aluminized low carbon steel”, Materials Science and Technology Conference and Exhibition MS &; T, 2008, pp. 1722-1732. [18] J.H. Jang, B.D. Joo, C.J. Van Tyne and Y.H. Moon, “Characterization of the aluminium coating layer in the hot press forming of boron steel”, Proc. IMechE B J. Engineering Manufacture, vol. 224, issue 1, 2010, pp. 87-93 [19] M. Suehiro, K. Kusumi, T. Miyakoshi, J. Maki and M. Ohgami, “Properties of aluminum-coated steels for hot-forming”, Nippon Steel Technical Report, issue 88 2003, pp. 16-21 [20] F. Borsetto, A. Ghiotti, and S. Bruschi, “Investigation of the high strength steel Al–Si coating during hot stamping operations”, Key Engineering Materials, vol. 410–411, 2009, pp. 289–296 [21] K. Mori and D. Ito, Prevention of oxidation in hot stamping of quenchable steel sheet by oxidation preventive oil, CIRP Annals - Manufacturing Technology, vol. 58, issue 1, 2009, pp. 267–270 [22] C. Beal, X. Kleber, D. Fabregue and M. Bouzekri, “Embrittlement of a zinc coated high manganese TWIP steel”, Materials Science and Engineering A, vol. 543, 2012, pp. 76– 83 [23] C. Beal, X. Kleber, D. Fabregue and M. Bouzekri, “Liquid zinc embrittlement of twinning-induced plasticity steel”, Scripta Materialia, vol. 66, issue 12, 2012, pp. 1030-1033 [24] A. Brenner, “Electrodeposition of Alloys”, vol. 1 and 2, Academic Press, New York and London, 1963 [25] J.B. Bajat, S. Stankovi’c and B.M. Joki’c, “Corrosion stability of Zn–Co alloys deposited from baths with high and low Co content – The influence of deposition current density”, Surface and Coatings Technology, vol. 204, 2010, pp. 2745-2753 [26] Y. Boonyongmaneerat, S. Saenapitak and K. Saengkiettiyut, “Reverse pulse electrodeposition of Zn–Ni alloys from a chloride bath”, J. of Alloys and Compounds, vol. 487, issue 1-2, 2009, pp. 479-482 [27] S. Chouchane, A. Levesque, P. Zabinski, R. Rehamnia and J.-P. Chopart, “Electrochemical corrosion behavior in NaCl medium of zinc–nickel alloys electrodeposited under applied magnetic field”, J. of Alloys and Compounds, vol. 506, issue 2, 2010, pp. 575-580 [28] N. Eliaz, K. Venkatakrishna and A. Chitharanjan Hegde, “Electroplating and characterization of Zn–Ni, Zn–Co and Zn–Ni–Co alloy”s, Surface and Coatings Technology, vol. 205, 2010, pp. 1969-1978 [29] R. Fratesi, G. Roventi, “Electrodeposition of zinc-nickel alloy coatings from a chloride bath containing NH4Cl”, J. Applied Electrochemistry, vol. 22, issue 7, 1992, pp. 657-662 [30] H. Fukushima, T. Akiyama, K. Higashi, R. Kammel and M. Karimkhani, “Electrodeposition Behavior Of Zn-Ni Alloys From Sulfate Bath Over A Wide-Range Of Current-Density”, Metallurgica, vol. 42, 1988, p. 242 [31] H. Dahms and I.M. Croll, “The Anomalous Codeposition of Iron&;#8208;Nickel Alloys”, J. Electrochemical Society, vol. 112, issue 8, 1965, pp. 771-775 [32] S.S. Abd El Rehim, E.E. Fouad, S.M. Abd El Wahab and H.H. Hassan, “Electroplating of zinc-nickel binary alloys from acetate baths”, Electrochimica Acta, vol. 41, issue 9, 1996, pp. 1413-1418 [33] K. Higashi, H. Fukushima, T. Urakawa, T. Adaniya and K. Matsudo, “Mechanis m of electrodeposition of Zinc Alloys Containing a Small Amount of Cobalt”, J. Electrochemical Society, vol.128, 1981, pp. 2081-2085 [34] H. Fukushima, T. Akiyama, J.H. Lee, M. Yamaguchi and K. Higashi, “Mechanism of the Electrodeposition of Zinc with Iron-Group Metals from Sulfate Baths”, Transaction of the Japan Institute of Metals, vol. 24, 1983, pp.125-131 [35] T. Akiyama, H. Fukushima and K. Higashi, “Mechanism of abnormal Type Alloy Deposition”, J. Iron Steel Institute of Japan, vol.72, 1986, pp. 918-923 [36] S. Lichu&;#353;ina, A. Chodosovskaja, A. Sudavi&;#269;ius, R. Ju&;#353;k&;#279;nas, D. Bu&;#269;inskien&;#279;e, A. Selskis and E. Juzeli&;#363;nas, “Cobalt-rich Zn-Co alloys: electrochemical deposition, structure and corrosion resistance”, Chemija, vol. 19, issue 1, 2008, pp. 25-31 [37] R. Valotkiene, K. Leinartas, D. Virbalyte, and E. Juzeliunas, “EQCM Study of anomalous Zn–Ni codeposition in acid sulfate electrolyte”, Chemija (Vilnius), 2001, pp. 236-240 [38] F Elkhatabi, M Benballa, M Sarret and C Muller, “Dependence of coating characteristics on deposition potential for electrodeposited Zn–Ni alloys”, Electrochimica Acta, vol. 44, 1999, pp. 1645-1653 [39] H.Y. Lee, S.G. Kim, “Characteristics of Ni deposition in an alkaline bath for Zn–Ni alloy deposition on steel plates”, Surface and Coatings Technology, vol. 135, issue 1, 2000, pp. 69-74 [40] G. Roventi, R. Fratesi, R.A. Della Guardia and G. Barucca, “Normal and anomalous codeposition of Zn–Ni alloys from chloride bath”, J. of Applied Electrochemistry, vol. 30, issue 2, 2000, pp. 173-179 [41] J.L. Ortiz-Aparicio, Y. Meas, G. Trejo, R. Ortega, T.W. Chapman, E. Chainet, and P. Ozil, “Electrodeposition of zinc–cobalt alloy from a complexing alkaline glycinate bath”, Electrochimica Acta, vol. 52, issue 14, 2007, pp. 4742-4751 [42] M.F. Mathias and T.W. Chapman, “The Composition of Electrodeposited Zinc&;#8208;Nickel Alloy Coatings”, J. Electrochemical Society, vol. 134, issue 6, 1987, pp. 1408-1416 [43] E. Gomez, R. Pollina and E. Valles, “Morphology and structure of nickel nuclei as a function of the conditions of electrodeposition”, J. Electroanalytical Chemistry, vol. 397, issue 1-2, 1995, pp. 111-118 [44] A. C. Hegde, K. Venkatakrishna, and N. Eliaz, “Electrodeposition of Zn-Ni, Zn-Fe, and Zn-Ni-Fe alloys”, Surface &; Coatings Technology, vol. 205, issue 7, 2010, pp. 2031-2041 [45] R. Albalat, E. Gomez, C. Muller, J. Pregonas, M. Sarret and E. Valles, “Zinc–nickel coatings – relationship between additives and deposit properties”, J. of Applied Electrochemistry, vol. 21, 1991, pp.44-49 [46] M.M. Abou-Krisha, “Influence of Ni2+ concentration and deposition potential on the characterization of thin electrodeposited Zn–Ni–Co coatings”, Materials Chemistry and Physics, vol. 125, 2011, pp. 621-627 [47] S.M.S.I. Dulal, H.J. Yun, C.B. Shin and C.K Kim, “Electrodeposition of CoWP film: III. Effect of pH and temperature”, Electrochimica Acta, vol. 53, issue 2, 2007, pp. 934-943 [48] M.H. Seo, D.J. Kim and J.S. Kim, The effects of pH and temperature on Ni–Fe–P alloy electrodeposition from a sulfamate bath and the material properties of the deposits, Thin Solid Films, vol. 489, issue1-2, 2005, pp. 122-129 [49] K.S. Lew, M. Raja, S. Thanikaikarasan, T. Kim, Y.D. Kim and T. Mahalingam, “Effect of pH and current density inelectrodeposited Co–Ni–P alloy thin films”, Materials Chemistry and Physics, vol. 112, issue 1, 2008, pp. 249-253 [50] M.A. Farzaneh, K. Raeissi and M.A. Golozar, “Effect of current density on deposition process and properties of nanocrystalline Ni–Co–W alloy coatings, J. of Alloys and Compounds, vol. 489, issue 2, 2010, pp. 488-492. [51] M.F. Mathias, C.M. Villa and T.W. Chapman, “Estimating kinetics parameters for nickel-zinc alloy deposition from current distribution measurements on the rotating disk electrode” J. Applied Electrochemistry, vol. 20, issue 1, 1990, pp. 1-10 [52] M.M. Abou-Krisha, “Electrochemical studies of zinc–nickel codeposition in sulphate bath”, Applied Surface Science, vol. 252, issue 4, 2005, pp. 1035-1048 [53] X. Qiao, H. Li, W. Zhao and D. Li, “Effects of deposition temperature on electrodeposition of zinc–nickel alloy Coatings”, Electrochimica Acta, vol. 89, issue 1, 2013, pp.771~777 [54] E. Chassaing and R. Wiart, “Electrocrystallization mechanism of Zn-Ni alloys in chloride electrolytes”, Electrochimica Acta, vol. 37, issue 3, 1992, pp. 545-553 [55] F.J.F. Miranda, O.E. Barcia, O.R. Mattos and R. Wiart, “Electrodeposition of Zn-Ni Alloys in Sulfate Electrolytes”, J. Electrochemistry Society, vol. 144, issue 10, 1997, pp. 3449-3457 [56] T.V. Byk, T.V. Gaevskaya and L.S. Tsybulskaya, “Effect of electrodeposition conditions on the composition, microstructure and corrosion resistance of Zn-Ni alloy coatings”, Surface and Coatings Technology, vol. 202, issue 24, 2008, pp. 5817-5823 [57] N. Birks, G. H. Meier and F. S. Pettit, “Introduction to the high-temperature oxidation of metals”, 2nd Edition (2006) [58] C. Wu and W. Gao, “Pilling-Bedworth ratio for oxidation of alloys”, Material Research Innovations, vol. 3, issue 4, 2000, pp. 231-235 [59] E. McCafferty, “Introduction to Corrosion Science”, Springer, 2010 [60] D.G. Enos and L.L. Scribner, The potentiodynamic polarization scan, Technical Report 33, Solartron Instrument UK, 1997 [61] X. Su, N.Y. Tang, and J.M. Toguri, “Thermodynamic Assessment of the Ni-Zn System”, Journal of Phase Equilibria, vol. 23, issue 2, 2002, p.143 [62] G.P. Mohanty and L.V. Azaroff, “Electron Density Distributions in ZnO Cry stals”, J. Chernical Physics, vol. 35, issue 4, 2004 [63] D.G. Thomas, “Interstitial zinc in zinc oxide”, Journal of Physics and Chemistry of Solids, vol. 3, issues 3–4, 1957, pp. 229–237 [64] E. Scharowsky ,“Optische und elektrische Eigenschaften von ZnO-Einkristallen mit Zn-uberschus“, Zeitschrift fur Physik, vol. 135, issue 3, 1953, pp. 318-330 [65] N.Y. Tang, X. B. Yu, “Study of the Zinc-rich corner of the Zn-Fe-Cr System at galvanizing temperatures”, J. Phase Equilibria and Diffusion, vol. 26, issue 1, 2005, p. 53 [66] ASM Handbook, "Alloy phase diagrams", ASM Internationa, vol.3, 1992 [67] G. D. Piero, F. Trifiro, and A. Vaccaria, “Non-stoicheismetric Zn-Cr Spinel as Active Phase in the Catalytic Synthesis of Methanol”, J. Chemical Society, Chemicl communications, I984, pp. 656-658 [68] J. Van Vleck, “Theory of the Variations in Paramagnetic Anisotropy Among Different Salts of the Iron Group”, Physical Review, vol. 41, issue 2, 1932, pp. 208-215 [69] N. Singh, J.Y. Rhee, “Electronic Structures and Optical Properties of Spinel ZnCr2O4”, J. Korean Physical Society, vol. 57, issue 5, 2010, pp. 1233-1237 [70] S. Mitra, “Fundamentals of Optical, Spectroscopic And X-Ray Mineralogy”, New Age International Publishers, 1996 [71] M.H. Kamdar, “Liquid metal embrittlement”, in Metals Handbook, 9th edition, ASM, Metals Park, 1987 [72] P.J.L. Fernandes and D.R.H. Jones, “Specificity in liquid metal induced embrittlement”, Engineering Failure Analysis, vol. 3, issue 4, 1996, pp. 299–302 [73] P.J.L. Fernandes and D.R.H. Jones, “The effects of microstructure on crack initiation in liquid-metal environments”, Engineering Failure Analysis, vol. 4, issue 3, 1997, pp. 195–204. [74] Handbook of Chemistry and Physics, 92nd Edition, CRC Press, 2011 [75] Nordic Council of Ministers. Cadmium Review. Report No. 1,04, 2003. Prepared CRI, EHN [76] Cadmium (CAS No. 7440-43-9) and Cadmium Compounds.
[77] J. Kondratiuk, P. Kuhn, M. Koyer, M. Meurer, J. Horstmann, and F.J. Lenze, 8th International conference on zinc and zinc alloy coated steel sheet, Genova Italy, 2011, pp. 343–352 [78] D.W. Fan and B.C. De Cooman, “State-of-the-Knowledge on Coating Systems for Hot Stamped Parts”, steel research international, vol. 83, issue 5, 2012, pp.412-433 [79] S. P. Lynch, “Failures of structures and Components by Metal-Induced Embrittlement”, J. Failure Analysis and Prevention vol. 8, issue 3, pp. 259-274 [80] J. Faderl, 2nd International conference on hot sheet metal forming of high-performance steel, 2009, pp. 283–291 [81] P. Drillet, D. Spehner and R. Kefferstein, “Process for manufacturing stamped products, and stamped products prepared from the same”, Patent, WO 2009090443 A1, 2008 [82] M. J. V. Genderen, W. C. Verloop, J. Loiseaux and G. C. Hensen, 3rd International conference on hot sheet metal forming of high-performance steel, 2011, pp. 145–152. [83] M. Suehiro, J. Maki, K. Kusumi, M. Ohgami and T. Miyakoshi, “Properties of aluminium-coated steels for hot-forming”, Nippon Steel Corporation Technical Report, vol. 88, 2003, pp. 16-21
|