跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.110) 您好!臺灣時間:2025/09/28 07:25
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:吳駿泓
研究生(外文):Chun-Hung Wu
論文名稱:電鍍鋅鎳/鉻複合鍍層於直接式熱沖壓鋼板高溫保護性質研究
論文名稱(外文):Electrodeposited Zinc-Nickel/Chromium Binary Coating and Its High Temperature Protection Properties for Direct Hot Stamping Steels
指導教授:林招松林招松引用關係
口試委員:蔡文達林新智陳宗榮王朝正開物
口試日期:2014-07-04
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:材料科學與工程學研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:英文
論文頁數:124
中文關鍵詞:熱沖壓鋼板、液態金屬誘發脆化抗高溫氧化陰極保護電鍍複合層
外文關鍵詞:Hot stamping steelLiquid metal induced embrittlementHigh temperature oxidation resistanceCathodic protectionElectrodeposited multi-layer
相關次數:
  • 被引用被引用:0
  • 點閱點閱:320
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
電鍍鎘保護層在嚴苛海洋腐蝕環境底下具有良好的犧牲保護效果,加上其光亮的金屬光澤外觀,因此廣泛應用於船舶、航太工業的抗蝕鍍層。許多研究發現鎘會對於環境造成危害且有一定的致癌性,近年來則多以鋅或鋅合金鍍層取代之。鉻為不銹鋼(鉻含量大於10.5wt%)中主要添加的合金元素,在一般大氣環境下,鉻可以在表面形成緻密的Cr2O3氧化層,阻礙鐵離子經由氧化層擴散到表面與氧氣接觸,進而降低氧化的速率。在本研究當中,使用鋅鎳合金與鉻的雙電鍍層來解決在高強度鋼熱沖壓製程中傳統熱浸鍍鋅層與電鍍鋅層會遇到的液態金屬誘發脆化(LMIE)與高溫氧化的現象。液態金屬誘發脆化現象(LIME)為鋅鍍層在高溫下熔融成液態,並沿著鐵的晶界擴散進入,導致在沖壓時成為許多應力集中的小區域而造成沿晶破壞;高溫氧化則因鋅為化學活性高的金屬,高溫下會與氧反應形成大量的氧化鋅而使得有效的鍍層量減少並導致組成分布不均。利用掃描式電子顯微鏡(SEM)與穿透式電子顯微鏡(TEM)觀察鋅鎳與鋅鎳/鉻鍍層微結構,並藉由電子微探儀(EPMA)來分析鍍層與鋼底材界面間擴散的情況。高溫拉伸試驗模擬熱沖壓製程中試片在高溫下實際受到張應力的情形,由應力應變圖可以看出不同鍍層對於鋼底材的機械性質有不同的影響。高溫於表面產生的氧化物則利用X射線繞(XRD)射與X射線光電子能譜儀(XPS)進行分析,分析的結果可以更了解鍍層在高溫下氧化的情形。綜合上述結果及透過開路電位測試檢視鍍層是否具犧牲保護的效果,以及評估雙電鍍層(Zn-Ni/Cr)是否適用於實際熱沖壓製程。
實驗結果發現,不同的電鍍溫度與溶液中鎳離子的比例會影響鍍層形貌、組成成分與陰極電流效率,且正常共電鍍的情形多發生於高鎳離子比與高溫(60℃以上)的情形下。EPMA的結果顯示鋅鎳鍍層在經過熱處理後會造成組成成分改變,導致此現象的原因與鍍層氧化以及鍍層與底材間的交互擴散有關。將鉻層電鍍於鋅鎳鍍層上方再經熱處理後發現鋅鎳鍍層的組成成分改變現象有明顯的降低。此外,鋅鎳合金層因其高熔點的性質,與純鋅層相比在高溫下與鐵基材的交互擴散較弱,具良好的高溫穩定性。鍍層中鎳的含量上升可提高鍍層的熱穩定性,電化學開路電位量測結果則顯示經熱處理後的鋅鎳鍍層中隨著鎳含量增加其陰極保護的效果隨之下降。在高溫拉伸試驗中,發現在較高的溫度與較慢的拉伸速率下,鋅鎳合金鍍層對鋼板的機械性質劣化較純鋅鍍層來得輕微。鋅在鉻中有相當大的固溶度,在高溫下會擴散至表面形成ZnO,而ZnO與Cr2O3在高溫下形成ZnCr2O4的尖晶石結構,而ZnCr2O4的結構也經由XRD與XPS鑑別出來,微結構也經由TEM進行細部觀察,結果顯示此結構能防止鋅鎳鍍層在高溫下劇烈氧化。從上述結果看來,鋅合金鍍層相較於電鍍純鋅層表現出較高的熱穩定性與較低的腐蝕速率,而鋅鎳/鉻複合鍍層則提供鋅合金鍍層所缺乏的抗氧化能力,可以減少鍍層因高溫下大量氧化所造成的損失。藉由調整適當的鋅鎳鍍層中的鎳含量來避免液態金屬誘發脆化並使鍍層提供足夠的陰極保護能力,鋅鎳/鉻複合鍍層可能會是適合熱沖壓製程的一個保護層。


Electrodeposited cadmium layer had provided excellent cathodic protection under serious marine conditions and expressed bright metallic color. Nowadays, the electrodeposited zinc and zinc-based coatings have been extensively applied in general auto industries as replacements for cadmium, which was found carcinogenic in many previous literatures. Chromium is the main alloy element to be added in stainless steel to form a compact chromium oxide above the surface, which retards Fe2+ ions diffusing through the oxide, thus slows down the oxidation rate. In this work, the electroplated bilayer (Zn-Ni/Cr) was used to prevent the Liquid Metal Induced Embrittlement (LMIE) phenomenon and serious oxidation that typically occur in hot stamping process degrading the mechanical properties and consuming the available coatings. The microstructure of Zn-Ni and Zn-Ni/Cr coatings was observed by SEM and TEM, and the thermal stability was examined by EPMA and Line scan. The mechanical properties of steels with and without zinc-based coating were illustrated by the strain-stress curve of high temperature tensile test and the broken specimens are examined by Metallographic analysis. Moreover, the surface oxides are characterized by X-ray Diffraction (XRD) and X-ray photoelectron spectroscopy (XPS), which help to further understand the oxidation situation in high temperature. By combining the results mentioned above with open circuit test and dynamic polarization curves, it is able to evaluate the performance of Zn-Ni/Cr bilayer coating in simulated hot stamping process.
The results show that Zn-Ni coating’s morphology and current efficiency both strongly depend on the ion ratio in the bath and bath temperature. The normal co-deposition of Zn-Ni always occurs at high nickel ion ratio in the electrolyte and high deposition temperature. EPMA mapping results revealed that there’s a serious separation of compositions in the Zn-Ni coating after heat treatment due to the effect of oxidation and inter-diffusion with the substrate. With the addition of chromium layer on top the situation of separation of compositions in the Zn-Ni coating was apparently reduced. The thermal stability is becoming higher when nickel content increases in the Zn-Ni coating; however, the overall reduction potential will also move close to the substrate comparatively. In addition, spinel structure (ZnCr2O4) formed by ZnO and Cr2O3 at high temperatures was identified by XRD and XPS measurements, which indicated zinc diffused through the chromium layer to form zinc oxide at the surface. The phenomenon can be explained by the great solubility of zinc in chromium and high oxygen affinity of zinc. ZnCr2O4 layer was also observed in TEM for detailed information. In conclusion, the Zn-based coatings exhibit higher thermal stability and lower corrosion rate the electro-galvanized coating. On the other hand, Zn-Ni/Cr bilayer provides better oxidation resistance than Zn-Ni coating that reduces the loss of coating through serious oxidation at high temperatures. With the adjustment of suitable nickel contents in the Zn-Ni coating and achieve equilibrium between the prevention of LMIE and enough ability of cathodic protection, Zn-Ni/Cr bilayer might be a solution to meet the requirements of hot stamping process.


口試委員會審定書 #
誌謝 i
中文摘要 iii
Abstract v
Contents vii
List of Figures x
List of Tables xvi
Chapter 1 Introduction 1
Chapter 2 Literature review 3
2.1 Hot stamping 3
2.1.1 Introduction to hot stamping 3
2.1.2 Liquid Metal Induced Embrittlement (LIME) 5
2.1.3 Surface oxidation and decarburization 7
2.1.3 Different types of protective coatings for hot stamping process 7
2.2 Anomalous co-deposition theory 11
2.2.1 Hydroxide suppression theory 11
2.2.2 Under potential deposition (UPD) theory. 12
2.2.3 Exchange current density theory. 13
2.3 Factors of Zn-Ni co-deposition process 14
2.3.1 Deposition temperature. 14
2.3.2 Bath content ratio. 15
2.3.3 Additives. 16
2.3.4 Electrolyte type. 16
2.4 High temperature oxidation theory 20
2.4.1 Pilling-Bedworth ratio. 24
Chapter 3 Experimental method 26
3.1 Experimental design 26
3.2 Experimental process 27
3.2.1 Chloride electrolyte of Zn-Ni electrodeposition 27
3.2.2 Formate electrolyte of Cr(Ⅲ) electrodeposition 27
3.2.3 Specimen preparation and pretreatment 28
3.2.4 Electrodeposition process 29
3.2 Measurements 30
3.3.1 Optical Microscope (OM) 30
3.3.2 Scanning Electron Microscope (SEM) 30
3.3.3 X-ray Dffraction (XRD) 30
3.3.4 Transmission Electron Microscope 31
3.3.5 Electron Probe Microanalysis (EPMA) 31
3.3.6 X-ray photoelectron spectroscopy (XPS) 31
3.3.7 High temperature tensile test 32
3.3.8 Electrochemical stripping method 34
3.3.9 Potentiodynamic polarization curve measurment 34
Chapter 4 Results 36
4.1 Zinc-Nickel coating 36
4.1.1 Anomalous codeposition study 36
4.1.2 Microstructure observation and thermal stability analysis 49
4.1.3 High temperature oxidation 57
4.2 Zinc-Nickel/Chromium binary coating 68
4.2.1 Microstructure observation and thermal stability analysis 68
4.2.2 High temperature oxidation 74
4.3 High temperature tensile test 88
4.3.1 Stress-strain curve 88
4.3.2 The metallographic analysis 90
4.3.3 Failure analysis 91
4.4 Electrochemical measurements 94
4.4.1 Electrochemical stripping 94
4.4.2 Potentiodynamic polarization curve 96
Chapter 5 Discussion 98
5.1 Anomalous co-deposition mechanism 98
5.1.1 Variations of nickel contents in the Zn-Ni coating 99
5.1.2 Effects on current efficiency 100
5.1.3 Differences in surface morphologies and microstructures 101
5.2 Oxidation resistance and thermal stability 102
5.3 High temperature oxidation analysis 103
5.3.1 Heat treatment of Zn-Ni alloy coating 103
5.3.2 Heat treatment of Zn-Ni/Cr binary coating 105
5.4 Mechanical properties 109
5.5 Electrochemical properties 110
Chapter 6 Conclusions 112
Chapter 7 Future work 114
Reference 115


[1] Norrbottens Jaernverk AB, “Manufacturing a hardened steel article”, Patent GB1490535, 1977
[2] G. Berglund, “The history of hardening of boron steel in northern Sweden”. in First International Conference on Hot Sheet Metal Forming of High-Performance Steel, Kassel, Germany, 2008, pp. 175–177
[3] T. Stohr, M. Merklein and J. Lechler, “Determination of frictional and thermal characteristics for hot stamping with respect to a numerical process design”, in First International Conference on Hot Sheet Metal Forming of High-Performance Steel, Kassel, Germany, 2008, pp. 293–300
[4] L.G. Aranda, Y. Chastel, J.F. Pascual and T.D. Negro, “Experiments and simulation of hot stamping of quenchable steels”, Advanced Technology of Plasticity, vol. 2, 2002, pp. 1135–1140
[5] M. Naderi, “Hot stamping of Ultra High Strength Steels”, Doctoral thesis, RWTH Aachen, 2007
[6] B. Joseph, M. Picat and F. Barbier, “Liquid metal embrittlement: A state-of-the-art appraisal”, The European Physical Journal Applied Physics, vol. 5, issue01, 1999, pp. 19-31
[7] R. Neugebauer, T. Altan, M. Geiger, M. Kleiner, and A. Sterzing, “CIRP Annals-Manufacturing Technology, vol. 55, issue 2, 2006, pp. 793–816
[8] C. W. Lee, D. W. Fan, I. R. Sohn, S. J. Lee and B. C. Cooman, Liquid Metal Induced Embrittlement of Zn-Coated Hot Stamping Steel, Metallurgical and Materials Transactions A, vol. 43, issue 13, 2012, pp. 5122-5127
[9] J. Kondratiuk, P. Kuhn, E. Labrenz, and C. Bischoff, “Zinc coatings for hot sheet metal forming: Comparison of phase evolution and microstructure during heat treatment”, Surface and Coating Technology, vol. 205, issue 17-18, 2011, pp. 4141–4153
[10] M. Abbasi, A. Saeed-Akbari, and M. Naderi, “The effect of strain rate and deformation temperature on the characteristics of isothermally hot compressed boron-alloyed steel”, Material Science and Engineering A, vol. 538, 2012, pp. 356–363
[11] D.W. Fan, R.B. Park, Y.R. Cho, and B.C. De Cooman, “Influence of Isothermal Deformation Conditions on The Mechanical Properties of 22MnB5 HPF Steel”, Steel Research International, vol. 81, 2010, pp. 292–298
[12] M. Gu, M.R. Notis and A.R. Marder, “Structure of As-Plated Electrodeposited Zinc--Iron Coatings”, Proc. of the International Conference on Zinc and Alloy Coated Steel Sheet (GALVATECH), 1989, p. 470
[13] C. Bories, J.P. Bonino and A. Rousset, “Structure and thermal stability of zinc-nickel electrodeposits”, J. Applied Electrochemistry, vol. 29, issue 9, 1999, pp. 1045-1051
[14] Schwartzman, The Great Soviet Encyclopedia (Print) (3rd ed.). New York: Macmillan, 1973
[15] K. Imai, Y. Yoshikawa, T. Toki, T. Nishibata, K. Uematsu, M. Uchihara, T. Takayama, “Properties of hot stamped galvannealed steel sheet”, SEAISI Quarterly (South East Asia Iron and Steel Institute), vol. 34, issue 4, 2005, pp. 47-53
[16] F. Jenner, M. Walter, R. Mohan Iyengar and R. Hughes, “Evolution of Phases, Microstructure, and Surface Roughness during Heat Treatment of Aluminized Low Carbon Steel”, Metallurgical and Materials Transactions A, vol. 41, issue 6, 2010, pp. 1554-1563
[17] F. Jenner, M. Walter, R. Mohan Iyengar and R. Hughes, “Evolution of phases and microstructure during heat treatment of aluminized low carbon steel”, Materials Science and Technology Conference and Exhibition MS &; T, 2008, pp. 1722-1732.
[18] J.H. Jang, B.D. Joo, C.J. Van Tyne and Y.H. Moon, “Characterization of the aluminium coating layer in the hot press forming of boron steel”, Proc. IMechE B J. Engineering Manufacture, vol. 224, issue 1, 2010, pp. 87-93
[19] M. Suehiro, K. Kusumi, T. Miyakoshi, J. Maki and M. Ohgami, “Properties of aluminum-coated steels for hot-forming”, Nippon Steel Technical Report, issue 88 2003, pp. 16-21
[20] F. Borsetto, A. Ghiotti, and S. Bruschi, “Investigation of the high strength steel Al–Si coating during hot stamping operations”, Key Engineering Materials, vol. 410–411, 2009, pp. 289–296
[21] K. Mori and D. Ito, Prevention of oxidation in hot stamping of quenchable steel sheet by oxidation preventive oil, CIRP Annals - Manufacturing Technology, vol. 58, issue 1, 2009, pp. 267–270
[22] C. Beal, X. Kleber, D. Fabregue and M. Bouzekri, “Embrittlement of a zinc coated high manganese TWIP steel”, Materials Science and Engineering A, vol. 543, 2012, pp. 76– 83
[23] C. Beal, X. Kleber, D. Fabregue and M. Bouzekri, “Liquid zinc embrittlement of twinning-induced plasticity steel”, Scripta Materialia, vol. 66, issue 12, 2012, pp. 1030-1033
[24] A. Brenner, “Electrodeposition of Alloys”, vol. 1 and 2, Academic Press, New York and London, 1963
[25] J.B. Bajat, S. Stankovi’c and B.M. Joki’c, “Corrosion stability of Zn–Co alloys deposited from baths with high and low Co content – The influence of deposition current density”, Surface and Coatings Technology, vol. 204, 2010, pp. 2745-2753
[26] Y. Boonyongmaneerat, S. Saenapitak and K. Saengkiettiyut, “Reverse pulse electrodeposition of Zn–Ni alloys from a chloride bath”, J. of Alloys and Compounds, vol. 487, issue 1-2, 2009, pp. 479-482
[27] S. Chouchane, A. Levesque, P. Zabinski, R. Rehamnia and J.-P. Chopart, “Electrochemical corrosion behavior in NaCl medium of zinc–nickel alloys electrodeposited under applied magnetic field”, J. of Alloys and Compounds, vol. 506, issue 2, 2010, pp. 575-580
[28] N. Eliaz, K. Venkatakrishna and A. Chitharanjan Hegde, “Electroplating and characterization of Zn–Ni, Zn–Co and Zn–Ni–Co alloy”s, Surface and Coatings
Technology, vol. 205, 2010, pp. 1969-1978
[29] R. Fratesi, G. Roventi, “Electrodeposition of zinc-nickel alloy coatings from a chloride bath containing NH4Cl”, J. Applied Electrochemistry, vol. 22, issue 7, 1992, pp. 657-662
[30] H. Fukushima, T. Akiyama, K. Higashi, R. Kammel and M. Karimkhani, “Electrodeposition Behavior Of Zn-Ni Alloys From Sulfate Bath Over A Wide-Range Of Current-Density”, Metallurgica, vol. 42, 1988, p. 242
[31] H. Dahms and I.M. Croll, “The Anomalous Codeposition of Iron&;#8208;Nickel Alloys”, J. Electrochemical Society, vol. 112, issue 8, 1965, pp. 771-775
[32] S.S. Abd El Rehim, E.E. Fouad, S.M. Abd El Wahab and H.H. Hassan, “Electroplating of zinc-nickel binary alloys from acetate baths”, Electrochimica Acta, vol. 41, issue 9, 1996, pp. 1413-1418
[33] K. Higashi, H. Fukushima, T. Urakawa, T. Adaniya and K. Matsudo, “Mechanis m of electrodeposition of Zinc Alloys Containing a Small Amount of Cobalt”, J. Electrochemical Society, vol.128, 1981, pp. 2081-2085
[34] H. Fukushima, T. Akiyama, J.H. Lee, M. Yamaguchi and K. Higashi, “Mechanism of the Electrodeposition of Zinc with Iron-Group Metals from Sulfate Baths”, Transaction of the Japan Institute of Metals, vol. 24, 1983, pp.125-131
[35] T. Akiyama, H. Fukushima and K. Higashi, “Mechanism of abnormal Type Alloy Deposition”, J. Iron Steel Institute of Japan, vol.72, 1986, pp. 918-923
[36] S. Lichu&;#353;ina, A. Chodosovskaja, A. Sudavi&;#269;ius, R. Ju&;#353;k&;#279;nas, D. Bu&;#269;inskien&;#279;e, A. Selskis and E. Juzeli&;#363;nas, “Cobalt-rich Zn-Co alloys: electrochemical deposition, structure and corrosion resistance”, Chemija, vol. 19, issue 1, 2008, pp. 25-31
[37] R. Valotkiene, K. Leinartas, D. Virbalyte, and E. Juzeliunas, “EQCM Study of anomalous Zn–Ni codeposition in acid sulfate electrolyte”, Chemija (Vilnius), 2001, pp. 236-240
[38] F Elkhatabi, M Benballa, M Sarret and C Muller, “Dependence of coating characteristics on deposition potential for electrodeposited Zn–Ni alloys”, Electrochimica Acta, vol. 44, 1999, pp. 1645-1653
[39] H.Y. Lee, S.G. Kim, “Characteristics of Ni deposition in an alkaline bath for Zn–Ni alloy deposition on steel plates”, Surface and Coatings Technology, vol. 135, issue 1, 2000, pp. 69-74
[40] G. Roventi, R. Fratesi, R.A. Della Guardia and G. Barucca, “Normal and anomalous codeposition of Zn–Ni alloys from chloride bath”, J. of Applied Electrochemistry, vol. 30, issue 2, 2000, pp. 173-179
[41] J.L. Ortiz-Aparicio, Y. Meas, G. Trejo, R. Ortega, T.W. Chapman, E. Chainet, and P. Ozil, “Electrodeposition of zinc–cobalt alloy from a complexing alkaline glycinate bath”, Electrochimica Acta, vol. 52, issue 14, 2007, pp. 4742-4751
[42] M.F. Mathias and T.W. Chapman, “The Composition of Electrodeposited Zinc&;#8208;Nickel Alloy Coatings”, J. Electrochemical Society, vol. 134, issue 6, 1987, pp. 1408-1416
[43] E. Gomez, R. Pollina and E. Valles, “Morphology and structure of nickel nuclei as a function of the conditions of electrodeposition”, J. Electroanalytical Chemistry, vol. 397, issue 1-2, 1995, pp. 111-118
[44] A. C. Hegde, K. Venkatakrishna, and N. Eliaz, “Electrodeposition of Zn-Ni, Zn-Fe, and Zn-Ni-Fe alloys”, Surface &; Coatings Technology, vol. 205, issue 7, 2010, pp. 2031-2041
[45] R. Albalat, E. Gomez, C. Muller, J. Pregonas, M. Sarret and E. Valles, “Zinc–nickel coatings – relationship between additives and deposit properties”, J. of Applied Electrochemistry, vol. 21, 1991, pp.44-49
[46] M.M. Abou-Krisha, “Influence of Ni2+ concentration and deposition potential on the characterization of thin electrodeposited Zn–Ni–Co coatings”, Materials Chemistry and Physics, vol. 125, 2011, pp. 621-627
[47] S.M.S.I. Dulal, H.J. Yun, C.B. Shin and C.K Kim, “Electrodeposition of CoWP film: III. Effect of pH and temperature”, Electrochimica Acta, vol. 53, issue 2, 2007, pp. 934-943
[48] M.H. Seo, D.J. Kim and J.S. Kim, The effects of pH and temperature on Ni–Fe–P alloy electrodeposition from a sulfamate bath and the material properties of the deposits, Thin Solid Films, vol. 489, issue1-2, 2005, pp. 122-129
[49] K.S. Lew, M. Raja, S. Thanikaikarasan, T. Kim, Y.D. Kim and T. Mahalingam, “Effect of pH and current density inelectrodeposited Co–Ni–P alloy thin films”, Materials Chemistry and Physics, vol. 112, issue 1, 2008, pp. 249-253
[50] M.A. Farzaneh, K. Raeissi and M.A. Golozar, “Effect of current density on deposition process and properties of nanocrystalline Ni–Co–W alloy coatings, J. of Alloys and Compounds, vol. 489, issue 2, 2010, pp. 488-492.
[51] M.F. Mathias, C.M. Villa and T.W. Chapman, “Estimating kinetics parameters for nickel-zinc alloy deposition from current distribution measurements on the rotating disk electrode” J. Applied Electrochemistry, vol. 20, issue 1, 1990, pp. 1-10
[52] M.M. Abou-Krisha, “Electrochemical studies of zinc–nickel codeposition in sulphate bath”, Applied Surface Science, vol. 252, issue 4, 2005, pp. 1035-1048
[53] X. Qiao, H. Li, W. Zhao and D. Li, “Effects of deposition temperature on electrodeposition of zinc–nickel alloy Coatings”, Electrochimica Acta, vol. 89, issue 1, 2013, pp.771~777
[54] E. Chassaing and R. Wiart, “Electrocrystallization mechanism of Zn-Ni alloys in chloride electrolytes”, Electrochimica Acta, vol. 37, issue 3, 1992, pp. 545-553
[55] F.J.F. Miranda, O.E. Barcia, O.R. Mattos and R. Wiart, “Electrodeposition of Zn-Ni Alloys in Sulfate Electrolytes”, J. Electrochemistry Society, vol. 144, issue 10, 1997, pp. 3449-3457
[56] T.V. Byk, T.V. Gaevskaya and L.S. Tsybulskaya, “Effect of electrodeposition conditions on the composition, microstructure and corrosion resistance of Zn-Ni alloy coatings”, Surface and Coatings Technology, vol. 202, issue 24, 2008, pp. 5817-5823
[57] N. Birks, G. H. Meier and F. S. Pettit, “Introduction to the high-temperature oxidation of metals”, 2nd Edition (2006)
[58] C. Wu and W. Gao, “Pilling-Bedworth ratio for oxidation of alloys”, Material Research Innovations, vol. 3, issue 4, 2000, pp. 231-235
[59] E. McCafferty, “Introduction to Corrosion Science”, Springer, 2010
[60] D.G. Enos and L.L. Scribner, The potentiodynamic polarization scan, Technical Report 33, Solartron Instrument UK, 1997
[61] X. Su, N.Y. Tang, and J.M. Toguri, “Thermodynamic Assessment of the Ni-Zn System”, Journal of Phase Equilibria, vol. 23, issue 2, 2002, p.143
[62] G.P. Mohanty and L.V. Azaroff, “Electron Density Distributions in ZnO Cry stals”, J. Chernical Physics, vol. 35, issue 4, 2004
[63] D.G. Thomas, “Interstitial zinc in zinc oxide”, Journal of Physics and Chemistry of Solids, vol. 3, issues 3–4, 1957, pp. 229–237
[64] E. Scharowsky ,“Optische und elektrische Eigenschaften von ZnO-Einkristallen mit Zn-uberschus“, Zeitschrift fur Physik, vol. 135, issue 3, 1953, pp. 318-330
[65] N.Y. Tang, X. B. Yu, “Study of the Zinc-rich corner of the Zn-Fe-Cr System at galvanizing temperatures”, J. Phase Equilibria and Diffusion, vol. 26, issue 1, 2005, p. 53
[66] ASM Handbook, "Alloy phase diagrams", ASM Internationa, vol.3, 1992
[67] G. D. Piero, F. Trifiro, and A. Vaccaria, “Non-stoicheismetric Zn-Cr Spinel as Active Phase in the Catalytic Synthesis of Methanol”, J. Chemical Society, Chemicl communications, I984, pp. 656-658
[68] J. Van Vleck, “Theory of the Variations in Paramagnetic Anisotropy Among Different Salts of the Iron Group”, Physical Review, vol. 41, issue 2, 1932, pp. 208-215
[69] N. Singh, J.Y. Rhee, “Electronic Structures and Optical Properties of Spinel ZnCr2O4”, J. Korean Physical Society, vol. 57, issue 5, 2010, pp. 1233-1237
[70] S. Mitra, “Fundamentals of Optical, Spectroscopic And X-Ray Mineralogy”, New Age International Publishers, 1996
[71] M.H. Kamdar, “Liquid metal embrittlement”, in Metals Handbook, 9th edition,
ASM, Metals Park, 1987
[72] P.J.L. Fernandes and D.R.H. Jones, “Specificity in liquid metal induced embrittlement”, Engineering Failure Analysis, vol. 3, issue 4, 1996, pp. 299–302
[73] P.J.L. Fernandes and D.R.H. Jones, “The effects of microstructure on crack initiation in liquid-metal environments”, Engineering Failure Analysis, vol. 4, issue 3, 1997, pp. 195–204.
[74] Handbook of Chemistry and Physics, 92nd Edition, CRC Press, 2011
[75] Nordic Council of Ministers. Cadmium Review. Report No. 1,04, 2003. Prepared CRI, EHN
[76] Cadmium (CAS No. 7440-43-9) and Cadmium Compounds.

[77] J. Kondratiuk, P. Kuhn, M. Koyer, M. Meurer, J. Horstmann, and F.J. Lenze, 8th International conference on zinc and zinc alloy coated steel sheet, Genova Italy, 2011, pp. 343–352
[78] D.W. Fan and B.C. De Cooman, “State-of-the-Knowledge on Coating Systems for Hot Stamped Parts”, steel research international, vol. 83, issue 5, 2012, pp.412-433
[79] S. P. Lynch, “Failures of structures and Components by Metal-Induced Embrittlement”, J. Failure Analysis and Prevention vol. 8, issue 3, pp. 259-274
[80] J. Faderl, 2nd International conference on hot sheet metal forming of high-performance steel, 2009, pp. 283–291
[81] P. Drillet, D. Spehner and R. Kefferstein, “Process for manufacturing stamped products, and stamped products prepared from the same”, Patent, WO 2009090443 A1, 2008
[82] M. J. V. Genderen, W. C. Verloop, J. Loiseaux and G. C. Hensen, 3rd International conference on hot sheet metal forming of high-performance steel, 2011, pp. 145–152.
[83] M. Suehiro, J. Maki, K. Kusumi, M. Ohgami and T. Miyakoshi, “Properties of aluminium-coated steels for hot-forming”, Nippon Steel Corporation Technical Report, vol. 88, 2003, pp. 16-21


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top