跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.121) 您好!臺灣時間:2025/12/11 07:11
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:洪瑛鈞
研究生(外文):Hung, Yin-Chun
論文名稱:地電阻影像探測在地工調查之應用與問題探討
論文名稱(外文):Application and Problems Analysis of ERT for Geotechnical Investigation
指導教授:林志平林志平引用關係
指導教授(外文):Lin, Chih-Ping
學位類別:博士
校院名稱:國立交通大學
系所名稱:土木工程系所
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:243
中文關鍵詞:地電阻剖面影像法三維效應邊界效應
外文關鍵詞:ERT3D effectboundary effect
相關次數:
  • 被引用被引用:13
  • 點閱點閱:850
  • 評分評分:
  • 下載下載:146
  • 收藏至我的研究室書目清單書目收藏:1
直流電阻法發展已將近一個世紀,近年來,技術已由一維、二維,延伸至真三維直流電阻法,但因施測難度受現場空間的限制,目前工程的應用主要仍以二維地電阻剖面影像法(2D Electrical Resistivity Tomography, 2D ERT)為主;2D ERT雖已廣泛應用於大地工程調查上,但生動的彩色地電阻率剖面背後隱藏了許多不確定性,若要將地電阻率剖面有效的應用在大地工程的尺度,必須提高施測的準確度及空間解析能力,或至少掌握這些不確定性,避免過份解讀施測結果。
本研究主要探討二維地電阻剖面的空間解析能力及潛在的施測問題,透過新竹斷層調查及新山水庫滲漏調查二案例,發現二維地電阻剖面影像法施測成果資料解讀確實對工程師而言常是一項很大的挑戰。本研究認為電阻率剖面圖判釋過程中常遭遇的問題,包含電阻率剖面空間解析能力的問題、電阻率剖面的可信度、邊界效應之影響、三維效應之影響等問題,致影響成果判釋之合理性。因此,本研究透過數值模擬方法,建立數種不同地質模型,包括:單一水平層面地層、水平夾層地層、單一垂直層面地層、垂直夾層層面、複合地層、傾斜層面地層及土石夾雜地層等簡化模型,定性探討不同地質狀況二維地電阻剖面空間解析能力的特性。另由於二維地電阻施測時常受到三維效應及邊界效應的影響,致二維地電阻剖面可能造成失真的現象,此效應目前尚未有詳細的評估,本研究亦透過數值模擬探討不同情境的可能3D效應、邊界效應,並建立新竹斷層、新山水庫案例的三維模型,探討此二效應造成的影響。
經由本研究的案例分析及數值模擬評估發現,三維及邊界效應確實會影響施測結果,造成判釋誤差;透過數種不同地質模型的模擬結果,發現地層變化對二維地電阻剖面影響的變化規則,本研究亦提出判讀上的建議,以提升未來在成果資料判釋的準確性,避免誤判及過度判讀。

Direct current (DC) electrical resistivity method has been developed for almost a century. It has evolved from the 1D, 2D, to more recently the true 3D method. However, field conditions often obstruct 3D surveys and 2D electrical resistivity tomography (ERT) remains to be the state of the practice in geotechnical investigation due to its simplicity in field works and less space requirement. The 2D ERT has been widely applied, but the uncertainty behind the obtained vivid resistivity image is not clear. Its accuracy, spatial resolution, and possible pitfalls should be understood to avoid misinterpretation.
The objectives of this study are to investigate the spatial resolution of 2D ERT measurements and its potential limitations. The challenges for engineers to interpret the 2D ERT results are manifested via two case studies including the Hsinchu fault and Hsinsan reservoir leakage investigations. The spatial resolution, reliability of inverted resistivity section, boundary effect, and 3D effect are identified as unclear problems which may significantly affect the interpretation of 2D ERT results. The resolving ability of 2D ERT were qualitatively studied by numerical simulations of 2D ERT surveys in various geological conditions including single horizontal layer, horizontal sandwiched layer, single vertical layer, vertical sandwiched layer, inclined layer, and block-in-matrix structure. The results of 2D survey may be distorted in conditions which violate the assumption of 2D structure and infinitive boundary. This study further used 3D numerical modeling to assess how 3D effects might distort the 2D inversion in some typical scenarios. The Hsinchu fault and Hsinsan reservoir field cases were re-visited by 3D modeling to verify the results of 2D ERT under 3D conditions.
From the case studies and numerical simulations, it was shown that 3D and boundary effects may significantly influence the results of 2D ERT resulting in false interpretations. The behavior and pattern of 3D and boundary effects are revealed by the 3D modeling. Suggestions are made accordingly to facilitate reasonable interpretations of 2D ERT and avoid false or over interpretations.

目錄
中文摘要 i
英文摘要 iii
誌謝 v
目錄 vi
表目錄 viii
圖目錄 ix
圖目錄 ix
一、緒論 1
1.1 研究動機 1
1.2 研究目的 3
1.3 研究方法與流程概述 4
二、文獻回顧與研究方法 5
2.1地層的導電性質 5
2.2 ERT施測原理 13
2.2.1電探技術的發展 13
2.2.2地層電位場分佈情形 17
2.2.3地電阻率量測施測方法 24
2.2.4正算與反算模式 32
2.2.5現地施測方法選擇 42
2.2.6 解析能力相關探討 53
2.3 ERT於地工調查之應用 64
三、案例探討與評析 72
3.1新竹斷層調查 72
3.1.1新竹斷層背景 74
3.1.2 現地施測說明 81
3.1.3 施測成果 86
3.2 新山水庫滲漏調查 93
3.2.1 新山水庫背景 93
3.2.2現地施測說明 99
3.2.3施測成果 104
3.3地電阻影像探測問題評析 109
四、地電阻影像解析能力探討與評析 114
4.1地質模型 114
4.1.1單一水平層面地層 115
4.1.2水平夾層地層 123
4.1.3單一垂直層面地層 133
4.1.4垂直夾層地層 137
4.1.5複合地層 145
4.1.6傾斜層面地層 153
4.1.7土石夾雜地層 161
4.2地電阻影像評價分析 172
4.2.1靈敏度方程式之應用 172
4.2.2建立正算模型 181
五、二維電探的三維與邊界效應 184
5.1 三維效應 184
5.1.1新竹斷層三維效應分析 186
5.1.2新山水庫三維效應分析 203
5.1.3具管線地層三維效應分析 209
5.2邊界效應 217
5.3 時間序列反算方法應用(Time-lapse) 227
六、結論與建議 230
6.1 結論 230
6.2 建議 233
參考文獻 235


參考文獻
1. Abdel Aal, G.Z., Ismail, A.M., Anderson, N.L. and Atekwana E.A.,2003 , “Geophysical investigation of seepage from an earth fill dam”, Geophysics 2003, pp.1-8.
2. Abuzeid, N., 1994. Investigation of channel seepage areas at the existing Kaffrein dam site (Jordan) using electrical-resistivity measurements. Journal of Applied Geophysics 32, 163-175.
3. Godio and G. Bottlno ,2001, Electrical and Electromagnetic Investigation for Landslide Characterisation ,Phys. Chem. Earth (C). Vol. 26, No. 9, pp. 705-710.
4. Awni T. Batayneh ,2001, Resistivity imaging for near-surface resistive dyke using two-dimensional DC resistivity techniques ,Journal of Applied Geophysics 48 25–32.
5. Awni T. Batayneh Æ Abdullah A. Al-Diabat ,2002,Application of a two - dimensional electrical tomography technique for investigating landslides along the Amman–Dead Sea highway, Jordan , Environmental Geology 42,399–403.
6. Barker , R., 1981. The offset system of electrical resistivity sounding and its use with a multicore cable. Geophysical Prospecting29, 128–143.
7. Barker, R., Moore, J., 1998. The application of time-lapse electrical tomography in groundwater studies. Leading Edge 17, 1454– 1458.
8. Batayneh, A. Abdullah A. Al-Diabat(2002). Application of a two-dimensional electrical tomography technique for investigating landslides along the Amman–Dead Sea highway, Jordan. Environmental Geology (2002) 42:399–403
9. Batayneh, A. and Barjous, M. (2003). ”A Case Study of Dipole-Dipole Resistivity for Geotechnical Engineering from the Ras en Naqab Area, South Jordan.” JEEG, 8(1), 31–38.
10. Beresnev, Hruby, Davis (2002). The use of multi-electrode resistivity imaging in gravel prospecting, Journal of Applied Geophysics 49 (2002) 245– 254.
11. Bernstone, C., Dahlin, T., 1997. DC resistivity mappingof old landfills: two case studies. European Journal of Engineering and Environmental Geophysics 2 (2), 121–136.
12. Binley, A., W. Daily and A. Ramirez, 1997, Detecting Leaks from Environmental Barriers using Electrical Current Imaging, J. Env. and Eng. Geophysics, Vol. 2.(1), p11-19.
13. Binley, A., W.Daily and A.Ramirez, 1999, Detecting leaks from waste storage ponds using electrical tomographic methods", In: Proc. 1st World Congress on Process Tomography,p6-13, April 14-17, 1999.
14. CGS (Central Geological Survey), 1998. Explanatory Text of the Geologic Map of Taipei (1:50,000). Ministry of Economic Affairs, Taipei, Taiwan.
15. COMSOL Group, 2011. COMSOL Multiphysics Finite Element Analysis Software Ver. 4.2a, Official Site: http://www.comsol.com/.
16. Cho, I.K, Yeom, J.Y., 2007. Crossline resistivity tomography for the delineation of anomalous seepage pathways in an embankment dam. Geophysics 72, 31-38.
17. Corwin, D.L., Lesch, S.M., 2003. Application of soil electrical conductivity to precision agriculture: theory,principles, and guidelines. Agron. J. 95 (3), 55–471.
18. Corwin, D.L., Lesch, S.M., 2005a. Characterizing soil spatial variability with apparent soil electrical conductivity: I Survey protocols. Comp. Electron. Agric. 46, 103–133.
19. Corwin, D.L., Lesch, S.M., 2005b. Characterizing soil spatial variability with apparent soil electrical conductivity:II Case study. Comp. Electron. Agric. 46, 135–152.
20. Colucci, P., G.T. Darilek, D.L. Laine and A. Binley, 1999, Locating Landfill Leaks Covered with Waste, In Proc. International waste management and landfill symposium, Sardinia 99, Cagliari, Italy, Oct. 1999, Vol. 3, 137-140
21. Dahlin, T., 1989. The development of a cable system for vertical electrical sounding and a comparison of the Schlumberger and Offset Wenner methods. Licentiate Thesis LUTVDG/(TVTG-1005)/1-77, Lund University, 1989, 77pp.
22. Dahlin, T., 1993. On the automation of 2D resistivity surveying for engineering and environmental applications. Doctoral Thesis, ISRN LUTVDG/TVDG–1007–SE, ISBN 91-628-1032-4, Lund University, 187pp.
23. Dahlin, T., 1996. 2D resistivity surveyingfor environmental and engineering applications. First Break 14 (7), 275–283.
24. Dahlin, T., Loke, M.H., 1998. Resolution of 2D Wenner resistivity imaging as assessed by numerical modelling. Journal of Applied Geophysics 38 (4), 237–249.
25. Dahlin, T. and Owen, R., 1998. Geophysical investigations of alluvial aquifers in Zimbabwe. Proceedings of the IV Meeting of the Environmental and ngineering Geophysical Society (European Section), Sept. 1998, Barcelona, Spain, 151-154.
26. Dahlin, T., Glatz, D., Persson, N., Gwaze, P., Owen, R., 1999a. Electrical and magnetic investigations of deep aquifers in North Matabeleland, Zimbabwe. Proceedings of the Fifth Meetingon Environmental and EngineeringGeophysics, Budapest, 5–9 September, 2pp.
27. Dahlin, T. 2001. The development of DC resistivity imaging techniques. Computers &; Geosciences 27 (2001) 1019–1029.
28. Dahlin, M. Palm,&; H. Garin 2004 Combined Resistivity Imaging and RCPT for Geotechnical Preinvestigatio ,Procs. NGM 2004, Ystad, Sweden, 9p.
29. Dahlin T. and Zhou B., 2004, “A numerical comparison of 2D resistivity imaging with 10 electrode arrays”, Geophysical prospecting, Vol. 52, pp.379-398.
30. Dahlin, T., Leroux, V., 2006. Time-lapse resistivity investigations for imaging saltwater transport in glaciofluvial deposits. Environmental Geology 49, 347-358.
31. Daily, W., A. Ramirez, A. Binley, 2004, Remote Monitoring of Leaks in Storage Tanks using Electrical Resistance Tomography: Application at the Hanford Site, Journal of Environmental and Engineering Geophysics 9(1), 11-24.
32. Darilek, G.T., Corapcioglu, M.Y., and Yeung, A.T.,“Sealing Leaks in Geomembrane Liners Using Electrophoresis,” Journal of Environmental Engineering, June, 1996.
33. Demanet, D., Renardy, F., Vanneste, K., Jongmans, D., Camelbeeck, T., and Meghraoui, M. (2001). ”The use of geophysical prospecting for imaging active faults in the Roer Graben, Belgium.” GEOPHYSICS, 66(1), 78–89.
34. Donat Demanet,Eric Pirard,Fran¸ ois Renardy,Denis Jongmans , 2001 , Application and processing of geophysical images for mapping faults Computers &; Geosciences 27 1031–1037 .
35. Friedel, S., 2003. Resolution, stability and efficiency of resistivity tomography estimated from a generalized inverse approach. Geophysics Journal International 153, 305–316.
36. Geotomo Software 2007. RES2DINV Ver. 3.56, Rapid 2-D Resistivity and IP inversion using the least-squares method, available at www.geoelectrical.com.
37. Geotomo Software 2002. RES2DMOD Ver. 3.01, Rapid 2D resistivity forward modelling using the finite-difference and finite-element methods, available at www.geoelectrical.com.
38. Giano S. I., Lapenna V., Piscitelli S., Schiattarella M. (200). Electrical imaging and self-potential survayes to study the geological setting of the Quaternary, slope depositsin the Agri high valley (Southern Italy). Annals of Geophysical. Vol 43, No 2.
39. Gil Lim Yoon and Jun Boum Park ,2001, Sensitivity of leachate and fine contents on electrical resistivity variations of sandy soils , Journal of Hazardous Materials B84 147–161
40. Gish, O.H., Rooney, W.J., 1925. Measurement of resistivity of large masses of undisturbed earth. Terrestrial Magnetism and Atmospheric Electricity 30 (4), 161–188.
41. Godio A., Bottino G. (2001). Electrical and electromagnetic investigation for landslide characterization. Physics and Chemistry of the Earth, Part C: Solar, Terrestrial &; Planetary Science. Volume 26, Issue 9, 2001, Pages 705–710.
42. Griffiths, D.H., Barker, R.D., 1993., Two-dimensional resistivity imaging and modelling in areas of complex geology. Journal of Applied Geophysics 29, 211–226.
43. Griffiths, D.H., Turnbull, J., Olayinka, A.I., 1990. Two dimensional resistivity mappingwith a computer-controlled array. First Break 8 (4), 121–129.
44. Havevith H.-B., Jongmans D., Abdrakhmatov K., Trefois P., Delvaux D., Torgoe v I.A. (2000). Geophysical Investigations Of Seismically Induced Surface Effects: Case Study Of A Landslide In The Suusamyr Valley, Kyrgyzstan. Surveys in Geophysics 2000, Volume 21, Issue 4, pp 351-370.
45. Hendrickx, J.M.H., Das, B., Corwin, D.L., Wraith, J.M., Kachanoski, R.G., 2002a. Indirect measurement of solute concentration. In: Dane, J.H., Topp, G.C. (Eds.), Methods of Soil Analysis, Part 4 – Physical Methods. Soil Sci. Soc. Am. Book Ser. 5. Soil Science Society of America, Madison, WI, USA, pp.1274 –1306.
46. Hubbert, M. King , 1940, The theory of ground water motion : Journal of geology , v48, p.785-994.
47. Igor A. Beresnev, Claire E. Hruby, Caroline A. Davis , 2002,The use of multi-electrode resistivity imaging in gravel prospecting. ,Journal of Applied Geophysics 49 245– 254.
48. Johansson, S., Dahlin, T., 1996. Seepage monitoring in an earth embankment dam by repeated resistivity measurements. European Journal of Engineering and Environmental Geophysics 1, 229-247.
49. Karastathis, V.K., Karmis, P.N., Drakatos, G., Stavrakakis, G., 2002. Geophysical methods contributing to the testing of concrete dams, Application at The Marathon Dam. Journal of Applied Geophysics 50, 247-260.
50. Kim, J.H., Yi, M.J., Song, Y., Seol, S.J., Kim, K.S., 2007. Application of Geophysical Methods to the safety analysis of an earth dam. Journal of Environmental and Engineering Geophysics 12, 221-235.
51. Koefoed O., 1979, “Geosounding Principles”, Elsevier scientific publishing company.
52. Koichi Suzuki, Shinji Toda, Kenichiro Kusunoki, Yasuhiro Fujimitsu, Tohru Mogi and Akira Jomori,” Case studies of electrical and electromagnetic methods applied to mapping active faults beneath the thick quaternary “, Engineering Geology Vol.56 pp29–45 (2000).
53. Kunetz, G., 1966. Principles of Direct Current Resistivity Prospecting. Gebru¨ der Borntraeger, Berlin, 103pp.
54. LaBrecque D., Miletto M., Daily W., Ramirez A. and Owen E. 1996. The effects of “Occam” inversion of resistivity tomography data. Geophysics 61, 538–548.
55. Li, Y., 1992. Inversion of three-dimensional direct current resistivity data. Ph.D. Dissertation, University of British Columbia, Vancouver, British Columbia, 165pp.
56. Lee, J.Y., Choi, Y.K., Kim, H.S., Yun, S.T., 2005. Hydrologic characteristics of a large rockfill dam: Implications for water leakage. Eng. Geol. 80, 43–59.
57. Lim, H.D., Kim, K.S., Kim, J.H., Kwon, H.S., Oh, B.H., 2004. Leakage detection of earth dam using geophysical methods. Porc. International Commission on Large Dams (ICOLD), 72th Annual Meeting, 16-22 May 2004. Seoul, Korea, pp. 212-224.
58. Loke, M.H. and Barker, R.D., 1995. Least-squares deconvolution of apparent resistivity pseudosections. Geophysics, 60, 1682-1690.
59. Loke, M.H., Barker, R.D., 1996b. Practical techniques for 3D resistivity surveys and data inversion techniques. Geophysical Prospecting44 (3), 499–524.
60. Loke, M.H., 2001. Constrained time-lapse resistivity imaging inversion. Proc. Symposium on the Application of Geophysics to Engineering and Environmental Problems, SAGEEP, Denver, Colorado, March 4-7 2001.
61. Loke, M.H. &; Dahlin, T. 2002. A comparison of the Gauss-Newton and quasi-Newton methods in resistivity imaging inversion, Journal of Applied Geophysics, 49(3): 149-162.
62. Loke M.H., Acworth I. and Dahlin T., 2003, “A comparison of smooth and blocky inversion method in 2D electrical imaging surveys”, Exploration geophysics, Vol. 34, pp.182-187.
63. Loke M.H., 2003, “Tutorial : 2-D and 3-D electrical imaging surveys”, Geotomo Software, Malaysia.
64. Malkawi, A.I.H., Al-Sheriadeh, M., 2000. Evaluation and rehabilitation of dam seepage problems, A case study: Kafrein dam. Eng. Geol. 56, 335–345.
65. Myriam Schmutz, Yves Albouy, Roger Guérin, Olivier Maquaire, Jacques Vassal, Jean-Jacques Schott, Marc Descloîtres(2000). Joint Electrical and Time Domain Electromagnetism (TDEM) Data Inversion Applied to the Super Sauze Earthflow (France). Surveys in Geophysics 2000, Volume 21, Issue 4, pp 371-390.
66. Niwas , S , Singhal ,D.C. ,1981, Estimation of aquifer transimissity from Dar-Zarrouk parameters in prous media , J. Hydro., 50,393-399.
67. Nguyen F. , S. Garambois, D. Jongmans, E. Pirard, M.H. Loke(2005), Image processing of 2D resistivity data for imaging faults ,Journal of Applied Geophysics 57 260–277.
68. Nguyen, F., Kemna, A., Antonsson, A., Engesgaard, P., Kuras, O, Ogilvy, R., Gisbert, J., Jorreto, S., Pulido-Bosch, A., 2009. Characterization of seawater intrusion using 2D electrical imaging. Near Surface Geophysics 7, 377–390.
69. Nyquist, J.E., Bradley, J.C. and Davis, R.K., 1999. DC resistivity monitoring of potassium permanganate injected to oxidize TCE in situ. Journal of Environmental &; Engineering Geophysics, 4, 135-148.
70. Oh, Y.C., Jeong, H.S., Lee, Y.K., Shon, H., 2003. Safety evaluation of rock-fill dam by seismic(MASW) and resistivity method. SAGEEP Proceeding, pp.1377-1386.
71. Okko, O., Hassinen, P., Korkealaakso, J., 1994. Location of leakage paths below earth dams by geophysical techniques. Proc. International Conference on Soil Mechanics and Foundation Engineering (ICSMFE), 5-10 January 1994,New Delhi, Indea, pp. 1349-1352.
72. Oldenborger, G.A., Routh, P.S., 2009. The point-spread function measure of resolution for the 3D electrical resistivity experiment. Geophysical Journal International 176, 405-414.
73. Oldenburg, D., Li, Y., 1999. Estimating the depth of investigation in dc resistivity and IP surveys. Geophysics 64, 403-416.
74. Oldenburg, D.W., Li, Y., 1994. Inversion of induced polarization data. Geophysics 59, 1327–1341.
75. Panthulu, T.V., Krishnaiah, C., Shirke, J.M., 2001. Detection of seepage paths in earth dams using self potential and electrical resistivity methods. Engineering Geology 59, 281-295.
76. Park S.K. and Van G.P. 1991. Inversion of pole-pole data for 3-D resistivity structure beneath arrays of electrodes. Geophysics 56, 951–960.
77. Perronea, A. Iannuzzia, V. Lapennaa, P. Lorenzob, S. Piscitellia, E. Rizzoa, F. Sdaob,2004, High-resolution e lectrical imaging of the Varco d’Izzo earthflow (southern Italy), Journal of Applied Geophysics 56 17– 29.
78. Petersson, W., 1907. Om malmso¨ kande medelst elektricitet. Jern-Kontorets Annaler 2–3, 153–171.
79. Ramirez, A., W.Daily, A. Binley, D. LaBrecque and D. Roelant, 1996, Detection of Leaks in Underground Storage Tanks Using Electrical Resistance Methods, J. Env. and Eng. Geophysics, Vol. 1 (3), 189-203.
80. Rizzoa E., Colellab A., Lapennaa V., Piscitellia S. (2004). High-resolution images of the fault-controlled High Agri Valley basin (Southern Italy) with deep and shallow electrical resistivity tomographies. Physics and Chemistry of the Earth, Parts A/B/C, Volume 29, Issues 4–9, 2004, Pages 321–327.
81. Rhoades, J.D., Chanduvi, F., Lesch, S., 1999b. Soil salinity assessment: methods and interpretation of electrical conductivity measurements. FAO Irrigation and Drainage Paper #57. Food and Agriculture Organization of the United Nations, Rome, Italy, pp. 1–150.
82. Rhoades, J.D., Shouse, P.J., Alves, W.J., Manteghi, N.M., Lesch, S.M., 1990. Determining soil salinity from soil electrical conductivity using different models and estimates. Soil Sci. Soc. Am. J. 54, 46–54.
83. Robert, P.C., 1989. Land evaluation at farm level using soil survey information systems. In: Bouma, J. (Ed.), Land Qualities in Space and Time. Proc. Symposium ISSS, August 22–26, 1988. Wageningen, Netherlands, pp.299–311.
84. Schlumberger, C., 1920. E´tude sur la Prospection E´lectrique du Sous-sol, Gaultier -Villars et Cie., Paris, 94pp.
85. Sheets, K.R., Hendrickx, J.M.H., 1995. Non-invasive soil water content measurement using electromagnetic induction. Water Resour. Res. 31, 2401–2409.
86. Song, S.H., Song, Y., Kwon, B.D., 2005. Application of hydrogeological and geophysical methods to delineate leakage pathways in an earth fill dam. Exploration Geophysics 36, 92-96.
87. Sjödahl, P., Dahlin, T., Johansson, S., 2005. Using Resistivity Measurements for Dam Safety Evaluation at Enemossen Tailings Dam in Southern Sweden. Environmental Geology 49, 267-273.
88. Sjödahl, P., Zhou, B., Dahlin, T., 2006. 2.5D Resistivity modeling of embankment dams to assess influence from geometry and material properties. Geophysics 71, 107-114.
89. Sjödahl, P., Dahlin, T., Johansson, S., 2010. Using the resistivity method for leakage detection in a blind test at the Røssvatn embankment dam test facility in Norway. Bull Eng. Geol Environ 69, 643-658.
90. Stogryn, A., 1971. Equations for calculating the dielectric constant of salinewater. IEEE Trans. Microwave Theory Technol. MIT 19, 733–736.
91. Takahashi T., 2004, “ISRM Suggested Methods for land geophysics in rock engineering”, International journal of rock mechanics &; mining sciences, Vol. 41, pp.885-914.
92. Telford W.M., Geldart L.P. and Sheriff R.E., 1990, “Applied Geophysics 2nd ”, Cambridge University Press.
93. TWC (Taiwan Water Corporation), 2001. The Second Safe Evaluation of Xin–shan Reservoir. Taichung, Taiwan (in Chinese).
94. Turkmen, S., Öeguler, E., Taga, H., Karaogullarindan, T., 2002. Detection and evaluation of horizontal fractures in earth dams using the selfpotential method. Eng. Geol. 63, 247–257.
95. U.S. Salinity Laboratory Staff, 1954. Diagnosis and improvement of saline and alkali soils, USDA Handbook 60.U.S. Government Printing Office, Washington, DC, USA, pp. 1–160.
96. Voronkov, O.K., Kagan, A.A., Krivonogova, N.F., Glagovsky, V.B., and Prokopovich, V.S., 2004. Geophysical methods and identification of embankment dam parameters,” Proceedings ISC-2 on Geotechnical and Geophysical Site Characterization, pp.593-599.
97. Wraith, J.M., Or, D., 1999. Temperature effects on soil bulk dielectric permittivity measured by time domain reflectometry: experimental evidence and hypothesis development. Water Resour. Res. 35, 361–369.
98. Zhou B. and Dahlin T., 2003, “Properties and effects of measurement errors on 2D resistivity imaging surveying’’, Near surface geophysics, Vol.1, pp.105-117.
99. 邱逸強,1995,彰化地區之電性地層學研究,國立中央大學地球物理研究所碩士論文。
100. 詹國皎等,1999,台灣西南海岸平原之研究國立中央大學地球物理研究所碩士論文。
101. 丁逸,1999. 應用電阻的海岸與河道變遷,國立中央大學地球物理研究所碩士論文。
102. 皮先瑋, 2000. 應用直流電阻法研究台灣西南海岸平原晚更新世與全新世地層界限,國立中央大學地球物理研究所碩士論文。
103. 陳佑邦, 2001, 應用地電阻影像剖面法於新城斷層之研究, 國立中央大學應用地質研究所碩土論文。
104. 梅興泰,2001,RIP二維分析初探,國立台灣大學土木工程研究所碩土論文。
105. 經濟部中央地質調查所,「活動斷層研究九十二年度鑽井報告」,(2002), http://cgsweb.moeacgs.gov.tw/result/Fault/web/91A.htm。
106. 潘宏璋,2003,應用地電阻影像剖面法於新竹斷層之研究,國立中央大學應用地質研究所碩土論文。
107. 陳宜傑,2004,應用地電阻法於土石流地滑之研究,國立中央大學應用地質研究所碩士論文。
108. 楊正傑,2005,ERT在地工調查應用之問題評析與空間解析能力探討,國立通大學土木工程研究所碩土論文。
109. 經濟部中央地質調查所,「新竹、苗栗與台南都會區地下地質與工 程環境調查研究(2/2)成果報告書95年度(新竹都會區)」(2006)。
110. 尤仁弘,2006,應用地電阻影像法於壩體潛在滲漏調查之研究,國立通大學土木工程研究所碩土論文。
111. 姚奕全,2007,應用地電阻法於崩積層含水特性調查與監測之初探,國立通大學土木工程研究所碩土論文。
112. 楊光程,2009,二維地電阻影像探測之3D 效應研究,國立通大學土木工程研究所碩土論文。


連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top