跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.59) 您好!臺灣時間:2025/10/17 06:43
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:官大軒
研究生(外文):Ta-HsuanKuan
論文名稱:氧化鋅鋁(AZO)薄膜沉積於不同傾斜角之聚對苯二甲酸乙二酯(PET)基板之微結構、光電以及彎曲疲勞特性之研究
論文名稱(外文):The Study on Thin Film Microstructure, Electrical and Optical Properties and Bending Fatigue Life Arising in the Aluminum-Doped Zinc Oxide Films Deposited on Tilted PET Substrate
指導教授:林仁輝
指導教授(外文):Jen-Fin Lin
學位類別:碩士
校院名稱:國立成功大學
系所名稱:機械工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:125
中文關鍵詞:氧化鋅鋁傾斜角度疲勞破壞氧缺陷
外文關鍵詞:AZOinclination anglebending fatigue lifeoxygen defects
相關次數:
  • 被引用被引用:0
  • 點閱點閱:158
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究利用磁控濺鍍的方式將氧化鋅鋁(AZO)沉積在聚對苯二甲酸乙二酯(PET)基板上,並在鍍製薄膜時使用自行設計之可改變底材鍍膜角度的治具進行,其中傾斜角度定義為離子束方向與垂直於PET基板方向之間的角度,可改變的傾斜角度分別為0°、15°、30°、45°、60°。當薄膜鍍製在軟性基板上時,容易因外力的彎曲或拉伸使表面產生裂紋而造成薄膜產生破壞,利用自行設計之彎曲試驗機對薄膜進行彎曲試驗。
本實驗利用壓電力顯微鏡、霍爾效應分析儀量測薄膜之電性,使用橢圓偏光儀、分光光譜儀系統量測其光學性質,以奈米壓痕試驗機量測其機械性質,用X光繞射儀、雙束型聚交離子束觀察薄膜結晶特性並分析其結構,用化學分析電子光譜儀、微光激發光譜儀分析薄膜之品質,討論不同傾斜角與不同彎曲條件對氧化鋅鋁薄膜各個性質的影響。
當薄膜因循環彎曲使電阻上升10%時可視為薄膜發生疲勞破壞,傾斜角0°、15°、30°、45°、60°之電阻上升10%時所對應的循環數分別為589、584、581、576、565。當各試片趨近疲勞破壞之循環數時,光、電性質有很明顯的變化,如穿透率在波長450nm之後有明顯得下降;彎曲後由於殘留應力的增加,使得壓電常數有明顯得下降。
氧缺陷之含量是影響薄膜機械、材料、光學、電性質的重要因子。當傾斜角度增加時,氧缺陷含量、鋁氧鍵結比上升,而鋅氧鍵結比下降;氧缺陷含量的增加會使薄膜在(002)結晶方向之強度比下降,即(103)結晶方向之強度比增加,同時也會增加薄膜內之殘留應力,殘留應力的提升會抑制薄膜的彎曲疲勞壽命和壓電常數。孔隙率與氧缺陷是影響薄膜電性的重要因子,孔隙率與氧缺陷的上升會導致電阻率下降和載子遷移率上升。在非 傾斜角之情況下,薄膜之穿透率和微光激發分析中的三個峰值(紫外光、綠光、紅光)強度會上升。

A flat plate in the deposition stage is designed to have a flexible tilt angle and thus form a variable inclination angle between the ion beam and the direction normal to a PET substrate. Five kinds of inclination angle, 0°, 15°, 30°, 45° and 60° were used to prepare the PET/aluminum-doped zinc oxide specimens in order to examine the effects of the inclination angle and the number of bending cycles on several parameters including the O2-peak intensity ratio (IRO2) from the Electron spectroscopy for chemical analysis, which is identified to be one of the controlling factors in the determinations of electrical, optical, piezoelectric and mechanical properties.
The effects of inclination angle on IRO2 and the effects of IRO2 on the parameters of the volume fractions of IRZnO(002) and IRZnO(103) from XRD analyses, the composite grain size and the residual stress in the thin film are investigated systematically. Increases in the inclination angle can raise the IRO2 value; they also reduce the peak intensity, IRZnO. A rise in IRO2 can reduce the volume fraction of IRZnO(002) but raise the residual stress of thin film; it is favorable for the lowering of the composite grain size. The combination of gComposite increase and IRO2 decrease has resulted in an electrical resistivity increase and a carrier mobility decrease. An increase in the residual stress has reduced the fatigue life of bending specimen and the piezoelectric coefficient. The uses of nonzero inclination angle create favorable conditions to raise the transmittance integration over the wavelengths of visible light and the intensities of the three peaks in the photoluminescence spectrum.



摘要 I
Extended Abstract III
致謝 VI
目錄 VII
表目錄 XII
圖目錄 XIV
第一章 緒論 1
1.1 前言 1
1.2 文獻回顧 3
1.3 研究動機 6
1.4 研究架構8
第二章 基本理論 9
2.1 AZO材料特性 9
2.1.1 晶體結構 9
2.1.2 光學性質 9
2.1.3 導電性質 10
2.2 壓電原理 10
2.2.1 壓電效應 10
2.2.2 壓電方程式 11
2.2.3 壓電力顯微鏡原理 17
2.3 殘留應力理論 18
2.3.1 殘留應力簡介 18
2.3.2 殘留應力理論分析 19
2.3.3 晶粒大小理論分析 21
2.4 儀器理論 22
2.4.1 磁控濺鍍原理 22
2.4.2 橢圓偏振原理 23
2.4.3 光學原理 28
2.4.4 霍爾量測原理 30
2.4.5 光電效應 31
2.4.6 光激發光原理 33
第三章 實驗規劃 40
3.1 實驗目的 40
3.2 實驗設備與方法 41
3.2.1 磁控濺鍍機(Magnetron Sputter) 41
3.2.2 可調傾斜角度載具(Adjustable Tilt Angle Holder) 42
3.2.3 彎曲試驗機(Bending Tester) 42
3.2.4 數位電表(Digital Multimeter ) 42
3.2.5 壓電力顯微鏡(Piezoresponse Force Microscopy) 43
3.2.6 橢圓偏光儀(Spectroscopic Ellipsometer) 44
3.2.7 分光光譜儀(Spectrophotometer) 44
3.2.8 奈米壓痕試驗機(Nano Indentation Tester) 45
3.2.9 霍爾效應分析儀(Hall Effect Analyzer) 45
3.2.10 X光繞射儀(X-ray Diffractometer) 46
3.2.11 雙束型聚交離子束(Dual Beam-Focused Ion Beam) 47
3.2.12 化學分析電子光譜儀(Electron Spectroscopy for Chemical Analysis) 47
3.2.13 微光激發光譜儀( Micro-PL Spectrometer) 48
3.3 實驗流程 49
3.3.1 試片製備流程 49
3.3.2 試片檢測 50
第四章 結果與討論 62
4.1 不同彎曲條件之結果 62
4.1.1 結構分析 62
4.1.1.1 XRD分析 62
4.1.1.2 晶粒大小分析 63
4.1.1.3 殘留應力分析 63
4.1.1.4 FIB 64
4.1.1.5 楊氏模數與硬度分析 64
4.1.2 成分分析 65
4.1.3 光學特性分析 67
4.1.3.1 穿透率分析 67
4.1.3.2 能隙值分析 68
4.1.3.3 孔隙率分析 68
4.1.3.4 折射率與消光係數分析 69
4.1.4 光激發光譜分析 69
4.1.5 電性分析 70
4.1.5.1 電阻分析 70
4.1.5.2 霍爾量測分析 70
4.1.5.3 壓電常數分析 71
4.2各性質之相互影響 72
第五章 結論與未來展望 117
5.1 結論 117
5.2 未來展望 118
參考文獻 119

[1] Marotti, R. E.; Giorgi, P.; Machado, G.; Dalchiele, E. A., “Crystallite size dependence of band gap energy for electrodeposited ZnO grown at different temperatures, Sol. Energy Mater. Sol. Cells 90.15: pp.2356-2361, 2006.
[2] Vossen, J. L., “Transparent Conducting Films, Phys. Thin Films 9, 1977.
[3] Bachari, E. M.; Amor, S. B.; Baud, G.; Jacquet, M., “Photoprotective zinc oxide coatings on polyethylene terephthalate films, Mater. Sci. Eng. B, 79.2, pp.165-174, 2001.
[4] Tzolov, M.; Tzenov, N.; Dimova-Malinovska, D.; Kalitzova, M.; Pizzuto, C; Vitali, G.; Zollo, G; Ivanov, I., “Vibrational properties and structure of undoped and Al-doped ZnO films deposited by RF magnetron sputtering, Thin Solid Films 379, pp.28-36, 2000.
[5] Park, S. M.; Ikegami, T.; Ebihara, K.; Shin, P. K., “Structure and properties of transparent conductive doped ZnO films by pulsed laser deposition, Appl. Surf. Sci. 253, pp.1522-1527, 2006.
[6] Ding J. J.; Chen, H. X.; Ma, S. Y., “The Al-doping and post-annealing treatment effects on the structural and optical properties of ZnO:Al thin films deposited on Si substrate, Appl. Surf. Sci. 256, pp.4304-4309, 2010.
[7] Fortunato, E.; Nunes, P.; Marques, A.; Costa, D.; Águas, H.; Ferreira, I.; Costa, M.E.V.; Godinho, M.H.; Almeida, P.L.; Borges, J.P.; Martins, R., “Transparent, conductive ZnO:Al thin film deposited on polymer substrates by RF magnetron sputtering, Surf. Coat. Technol. 151, pp.247-251, 2002.
[8] Banerjee, A. N.; Ghosh, C. K.; Chattopadhyay, K. K.; Minoura, H.; Sarkar, A. K.; Akiba, A.; Kamiya, A.; Endo, T., “Low-temperature deposition of ZnO thin films on PET and glass substrates by DC-sputtering technique, Thin Solid Films 496, pp.112-116, 2006.
[9] Song, D., “Effects of RF Power on Surface-Morphological, Structural and Electrical Properties of Aluminium-Doped Zinc Oxide Films by Magnetron Sputtering, Appl. Surf. Sci. 254, pp.4171-4178, 2008.
[10] Sierros, K. A.; Banerjee, D. A.; Morris, N. J.; Cairns, D. R.; Kortidis, I.; Kiriakidis, G., “Mechanical properties of ZnO thin films deposited on polyester substrates used in flexible device applications, Thin Solid Films 519, pp.325-330, 2010.
[11] Kwak, D. J.; Kim, J. H.; Park, B. W.; Sung, Y. M.; Park, M. W.; Choo, Y. B., “Growth of ZnO: Al transparent conducting layer on polymer substrate for flexible film typed dye-sensitized solar cell, Curr. Appl. Phys. 10.2, pp.282-285, 2010.
[12] Zhu, X. F.; Zhang, G. P.; Tan, J.; Liu, Y.; Zhu, S. J., “Damage behaviors of Cu/Ta bilayered films under cyclic loading, J. Mater. Res. 22.09, pp.2478-2482, 2007.
[13] Hamasha, M. M.; Alzoubi, K.; Switzer, J. C.; Lu, S.; Desu, S. B.; Poliks, M., “A study on crack propagation and electrical resistance change of sputtered aluminum thin film on poly ethylene terephthalate substrate under stretching , Thin Solid Films 519.22, pp.7918-7924, 2011.
[14] Baumert, E. K.; Pierron, O. N., “Very high cycle fatigue crack initiation in electroplated Ni films under extreme stress gradients, Scr. Mater. 67.1, pp.45-48, 2012.
[15] Wang, X.B.; Song, C.; Li, D. M.; Geng, K. W.; Zeng, F.; Pan, F., “The influence of different doping elements on microstructure, piezoelectric coefficient and resistivity of sputtered ZnO film, Appl. Surf. Sci. 253.3, pp.1639-1643, 2006.
[16] Shibata, T.; Unno, K.; Makino, E.; Ito, Y.; Shimada, S., “Characterization of sputtered ZnO thin film as sensor and actuator for diamond AFM probe, Sens. Actuators, A 102.1, pp.106-113, 2002
[17] Phillips, J. R., “Piezoelectric Technology Primer, CTS Wireless, Albuquerque, NM, May, 2000.
[18] Chopra, K. L., “Thin Film Phenomena, McGraw-Hill, NY, p.266, 1969.
[19] 白木 靖寬,吉田 貞史編著&王建義編譯,“薄膜工程學, 全華科技圖書股份有限公司,2006.
[20] Klung, H. P.; Alexander, L. E., “X-ray Diffraction Procedures for Polycrystalline and Amorphous Materials, John Wiley & Sons, NY, 1974.
[21] Li, T. C.; Chung, C. J.; Han, C. F.; Hsieh, P. T.; Chen, K. J.; Lin, J. F., “Effect of inclination angle applied to polyethylene terephalate substrate before the coating of Al-doped ZnO on film quality and mechanical and optical properties, Ceram. Int. 40.1, pp.591-603, 2013.
[22] Segmuller, A.;Murakami, M. “Analytical Techniques for Thin Films, Treatise Mater. Sci. Technol. 27, Academic Press, NY, p.143, 1988.
[23] Cebulla, R.; Wendt, R.; Ellmer, K., “Al-doped zinc oxide films deposited by simultaneous rf and dc excitation of a magnetron plasma relationships between plasma parameters and structural and electrical film properties , J. Appl. Phys. 83, pp.1087-1095, 1998.
[24] 郭鎧瑋, “磁控濺鍍機SOP, 南區微系統研究中心, 2006.
[25] Hiroyuki Fujiwara, “Spectroscopic Ellipsometry Principles and Applications, John Wiley & Sons, 2007.
[26] Miao, W. N.; Li, X. F.; Zhang, Q.; Huang, L.; Zhang, Z. J.; Zhang, L.; Yan, X. J., “Transparent conductive - Mo thin films prepared by reactive direct current magnetron sputtering at room temperature, Thin Solid Films 500.1, pp.70-73, 2006.
[27] Bouzid, K., et al. “Electrical resistivity and photoluminescence of zinc oxide films prepared by ultrasonic spray pyrolysis, Phys. Status Solidi, A 206.1, pp.106-115, 2009.
[28] Fukuyama, H.; Ebisawa, H.; Wada, Y., “Theory of Hall effect. I: nearly free electron, Prog. Theor. Phys. 42.3, pp.494-511, 1969.
[29] Mitchell, K. “The theory of the surface photoelectric effect in metals, Proc. R. Soc. London, Ser. A, pp.442-464, 1934.
[30] Wang, Z. L., “Zinc oxide nanostructures growth, properties and applications, J. Phys.: Condens. Matter 16.25, pp.829, 2004.
[31] 吳孟穎, 黃肇瑞, “反應性濺鍍高C軸取向氮化鈧鋁鑽石薄膜之特性與壓電性質研究,國立成功大學材料工程學系碩士論文,2011.
[32] 田春林,李中正, “光學薄膜應力與熱膨脹係數量測之研究 ,國立中央大學光電科學研究所博士論文,pp.14, 2000.
[33] Gao X. Y., “Analysis of the Optical Constants of Aluminum-doped Zinc-oxide Films by Using the Single-oscillator Model, J. Korean Phys. Soc. 57.4, 2010.
[34] Kalinin, S. V.; Gruverman, A., “Scanning probe microscopy of functional materials, Springer, NY, 2010.
[35] Cullity, B. D.;Stock, S. R. “Elements of X-Ray Diffraction, Wesley, 1978.
[36] Chen, M.; Wang, X.; Yu, Y. H.; Pei, Z. L.; Bai, X. D.; Sun, C.; Huang, R. F.; Wen, L. S., “X-ray photoelectron spectroscopy and auger electronspectroscopy studies of Al-doped ZnO films, Appl. Surf. Sci.158.1, pp.134-140, 2000.
[37] Peng, C.Y.; Sudarsanam, H.; Hamasha, M. M.; Lu, S.; Dhakal, T. P.; Westgate, C. R., “Performance of aluminum-doped zinc oxide thin films under bending fatigue conditions, Applications and Technology Conference(LISAT), IEEE Long Island, pp.1-6, 2012.
[38] Alzoubi, K.; Hamasha, M. M.; Lu, S.; Sammakia, B., “Bending fatigue study of sputtered ITO on flexible substrate, J. Disp. Technol.7.11, pp.593-600 , 2011.
[39] Islam, R. A.; Priya, S., “Effect of piezoelectric grain size on magnetoelectric coefficient of Pb(Zr0.52Ti0.48)O3-Ni0.8Zn0.2Fe2O4 particulate composites, J. Mater. Sci. 43.10, pp.3560-3568, 2008.
[40] Berfield, T. A.; Ong, R. J.; Payne, D. A.; Sottos, N. R., “Residual stress effects on piezoelectric response of sol-gel derived lead zirconate titanate thin films, J. Appl. Phys. 101.2, 2007.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top