跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.88) 您好!臺灣時間:2026/02/15 09:28
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張宗漢
研究生(外文):Tsung-han Chang
論文名稱:利用不同黏土-幾丁聚醣吸附劑去除水中二價銅離子之研究
論文名稱(外文):The Study of Using Chitosan Coated on Different Clays applied to Copper (II) Removal from Aqueous Solution
指導教授:萬孟瑋萬孟瑋引用關係
學位類別:碩士
校院名稱:嘉南藥理科技大學
系所名稱:環境工程與科學系
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:75
中文關鍵詞:吸附銅、幾丁聚醣高嶺土膨潤土
外文關鍵詞:AdsorptionBentoniteChitosanCupperKaolinite
相關次數:
  • 被引用被引用:4
  • 點閱點閱:747
  • 評分評分:
  • 下載下載:85
  • 收藏至我的研究室書目清單書目收藏:0
本研究從文獻中得知幾丁質的應用非常廣泛,使用在食品、醫學、美容、環境...等用途,而幾丁質經由去乙醯後的幾丁聚醣具有良好的吸附效果,運用在環境上可以吸附水中之重金屬離子,經由螯合作用易與重金屬離子形成配位鍵。另外幾丁質結構類似於纖維素,在地球上含量是非常豐富,是自然界上第二多高分子纖維,它來自於甲殼類動物如:蝦、蟹、等節肢動物。本實驗使用微量之幾丁聚醣附著於石英砂探討其吸附Cu2+效果,並且使用不同之自然砂土如高嶺土(Kaolinite)、膨潤土(Bentonite),改變幾丁聚醣型態,探討不同黏土聚合吸附劑之吸附能力,進而探討等溫吸附Langmuir Isotherm、Freundlish Isotherm之適用性及動力吸附(擬一階動力吸附、擬二階動力吸附)之探討。
本實驗在不同吸附劑應用於吸附平衡的試驗中發現:不同比例之膨潤土-幾丁聚醣與高嶺土-幾丁聚醣均可在不同之銅離子濃度下,於4小時的接觸時間中達到吸附平衡。此外,各吸附劑對於銅離子之吸附情形,由實驗數據得知:在單一使用幾丁聚醣、膨潤土及高嶺土之狀態下,以Chitosan > Bentonite> Kaolinite;若利用不同比例之高嶺石與膨潤土固化於幾丁聚醣對於Cu2+的吸附能力,排序如下:1:5 > 1:10 > 1:20。
不同比例之膨潤土-幾丁聚醣與高嶺土-幾丁聚醣吸附劑皆符合Langmuir等溫吸附模式,R2值均可達0.986以上,各吸附劑之最大吸附量依黏土與幾丁聚醣不同之結合比例1:5、:10、1:20分別為16.78、12.69、12.15(mg Cu2+/g CCB)及11.24、9.36、6.88(mg Cu2+/g CCK)。此外,在Freundlich等溫吸附式中,所有吸附劑之n值均大於1,亦驗證此吸附劑有利於金屬吸附現象的發生。
以動力吸附模式探討,不同比例之膨潤土-幾丁聚醣與高嶺土-幾丁聚醣吸附劑,其動力吸附方程式皆符合擬二階動力學模式(解析偏差值較符合,R2>0.999),吸附動力模式符合化學性吸付模式(Chemical Adsorption),顯示水中銅離子與石英砂─幾丁聚醣吸附劑表面之官能基原子間發生電子的交?耤B轉移或共有,形成吸附化學?~的吸附作用。
Because of the dramatic develop of industry, heavy metal pollution has become a global environmental considerations. The heavy metals in the soil and groundwater have endangered our environment and human body by direct or indirect pathway. Thus, how to solve efficiently the heavy metal pollution in groundwater has become the most essential issue around the world. Theoretically, the strategy for groundwater remediation cloud be divided in two categories, “control” and “treatment”. The treatment methods for groundwater contaminated site cloud be divided in two technologies, including the “ex-situ” and “in-situ” remediation. The most widely application based on the idea of in-situ remediation in US is permeable reactive barrier, due to its economical efficiency in treating large contamination area, and was widely accepted as an efficiency technology for groundwater remediation.
This research is based on the ideal of green design and using biodegradable material (Chitosan) coated with nature materials, such as kaolinite and bentonite. First of all, this research will perform the process optimization for this biodegradable adsorbent. The optimized adsorbents will execute the adsorption experiment, and evaluate the isothermal studies (Langmuir Isotherm、Freundlish Isotherm) and kinetic study (Pseudo-first order and Pseudo-second order kinetic model) for Cu ions.
In terms of the adsorption capacity and the ability to adsorb Cu2+ ions in aqueous medium, when used alone, is chitosan > bentonite > kaolinite. However, when clay materials (either bentonite or kaolinite) were coated with chitosan, the adsorption capacity and Cu2+ removal were significantly enhanced. Bentonite and kaolinite was coated with chitosan at 1:20, 1:10 and 1:5 chitosan-to-clay ratios. The equilibrium time was four hours. Equilibrium data fits very well to the Langmuir isotherm model, which indicates that the adsorption of copper ions was monolayer on homogeneous adsorption sites. Chitosan coated bentonite had a higher adsorption capacity for copper ions of 12.1507 mg/g, 12.6904 mg/g and 16.7785 mg/g compared to 6.8823 mg/g, 9.3633 mg/g, and 11.2360 mg/g for chitosan coated kaolinite for 1:20, 1:10 and 1:5 chitosan-to-clay ratios, respectively. Experimental data followed pseudo-second order kinetic model, which suggests that the chemical sorption is the rate limiting step, instead of mass transfer.
摘要 I
目 錄 VI
圖 目 錄 IX
表 目 錄 XI
第一章 前言 1
1.1研究動機 1
1.2研究目的 3
第二章 文獻回顧 4
2.1地下水的重金屬污染 4
2.1.1銅的性質與危害 6
2.2地下水的復育技術 8
2.2.1 地下水整治復育技術 8
2.2.2 污染復育技術的選擇 9
2.2.3 透水性反應牆 10
2.3 生物高分子聚合物(Biopolymer) 11
2.3.1幾丁質與幾丁聚醣 12
2.3.2幾丁聚醣應用於重金屬吸附之研究 15
2.3.3高嶺土(Kaolinite)之特性 16
2.3.4 膨潤土(Bentonite)之特性 18
2.4 吸附理論 19
2.4.1 吸附現象 19
2.4.2 吸附過程 20
2.4.3 影響吸附劑因素 21
2.5 等溫吸附模式 24
2.6 動力吸附模式 27
第三章 實驗方法與設備 30
3.1 實驗架構及流程 30
3.2 實驗設備與器材 32
3.2.1 實驗設備 32
3.2.2實驗藥品 33
3.3製備吸附劑 34
3.3.1幾丁聚醣固化於膨潤土 34
3.3.2幾丁聚醣固化於高嶺土 34
3.4濾料表面特性分析 37
3.4.1比表面積和孔徑分布 37
3.4.2 表面型態觀察 37
3.5 吸附實驗 38
3.5.1 實驗流程 38
3.5.2 吸附平衡實驗 40
3.5.3 動力吸附探討 40
3.6樣品分析 41
3.6.1 銅的分析方法 41
第四章 結果與討論 43
4.1製備黏土─幾丁聚醣吸附劑 44
4.2製備吸附劑之基本特性測定 45
4.2.1吸附劑比表面積之測定 45
4.2.2 電子顯微鏡(SEM)之觀察 47
4.2.3 製備吸附劑之TGA測定 57
4.3各吸附劑之平衡吸附分析 59
4.4各吸附劑吸附能力之探討 61
4.5吸附動力學之研究 63
4.6等溫吸附模式之研究 68
第五章 結論與建議 73
5.1結論 73
5.2建議 75
Avenue M., (2006).“Copper Supply& Consumption”. Copper Development Association Inc
Cestari, A. R., Vieira, E. F. S., de Oliveira, I. A., Bruns, R. E., (2007). The removal of Cu(II) and Co(II) from aqueous solutions using cross-linked chitosan—Evaluation by the factorial design methodology. Journal of Hazardous Materials, 143(1-2): 8-16.
Chang, M.Y. and Juang, R.S. (2004), “Adsorption of tannic acid, humic acid, and dyes from water using the composite of chitosan and activated clay” Journal of Colloid and Interface Science 278, pp.18-25
Ding, P., Huang, K. L., Li, G. Y., Zeng, W. W. (2007). Mechanisms and kinetics of chelating reaction between novel chitosan derivatives and Zn(II). Journal of Hazardous Materials, 146(1-2): 58-64.
Gecol, H., Miakatsindila, P., Ergican, E., Hiibel, S. R., (2006). Biopolymer coated clay particles for the adsorption of tungsten from water. Desalination, 197(1-3): 165-178.
Jin, J., Song, M., Hourston, D. J., (2004). Novel chitosan-based films cross-linked by genipin eith improved physical properties. Biomacromolecules, 5: 162-168.
Kang, D. W., Choi, H. R., Kweon, D.K. (1999). Stability Constants of Amidoximated Chitosan-g-poly(acrylonitrile) Copolymer for Heavy Metal Ions. Journal of Applied Polymer Science, 73, 469-476.
Li , N., Bai, R., (2005). Copper adsorption on chitosan–cellulose hydrogel beads: behaviors and mechanisms. Separation and Purification Technology, 42(3): 237-247.
Lagergren, S. (1898) “About the theory of so-called adsorption of soluble substances”. Kungliga Svenska Vetenskapsakademiens.Handlingar, 24(4): 1-39.
Lower, S.E. (1984). Polymers from the Sea Chitin and Chitosan I, Manufacturing Chemist 55, 73-75.
Mulligan C.N., Yong R.N., and Gibbs B.F., (2001) Heavy metal removal from sediments by biosurfactants, Journal of Hazardous Meterials, 85:111~125.
Noll, K. E. (1992), “Adsorption Technology for Air and Water Pollution Control”, Lewis Publishers.
Paulino, A. T., Guilherme, M. R., Reis, A. V., Tambourgi, E. B., Nozaki J., Muniz, E. C. (2007). Capacity of adsorption of Pb2+ and Ni2+ from aqueous solutions by chitosan produced from silkworm chrysalides in different degrees of deacetylation. Journal of Hazardous Materials, 147(1-2): 139-147.
Powell R.M., Puls R.W., Hightower S.K., and Sabatini D.A., (1995) Coupled iron corrosion and chromate reduction: mechanisms for subsurface remediation, Environ. Sci.Technol. 29:1913~1922.
Ramnani, S.P., Sabharwal, S., (2006). Adsorption behavior of Cr(VI) onto radiation crosslinked chitosan and its possible application for the treatment of wastewater containing Cr(VI). Reactive and Functional Polymers, 66,(9): 902-909.
Reddy KR, Xu CY, and Chinthamreddy S. (2001) Assessment of electrokinetic removal of heavy metals from soils by sequential extraction analysis, Journal of Hazardous Materials, B84:279~296.
Sankararamakrishnan, N., Sharma, A. K., Sanghi, R. (2007). Novel chitosan derivative for the removal of cadmium in the presence of cyanide from electroplating wastewater. Journal of Hazardous Materials, 148(1-2): 353-359.
Septhum, C., Rattanaphani, S., Bremner, J.B., Rattanaphani V. (2007). An adsorption study of Al(III) ions onto chitosan. Journal of Hazardous Materials, 148(1-2): 185-191.
Shafaei, A., Ashtiani, F. Z., Kaghazchi, T. (2007). Equilibrium studies of the sorption of Hg(II) ions onto chitosan. Chemical Engineering Journal, 133(1-3): 311-316.
Shahidi, F., Kamil J., Arachchi V., and Jeon Y., (1999). Food applications of chitin and chitosans, Trends in Food Science & Technology 10, 37-51.
Skaugrud, O. and Sargent, G. (1990). Chitin and Chitosan: Crustacean Biopolymers with Potential, International By-products Conference, 61-72, Anchorage, Alaska.
Sun B., Zhao F.J., Lombi E., and McGrath S.P., (2001) Leaching of heavy metals from contaminated soils using EDTA, Environmental Pollution. 113:111~120.
Wan, M.-W., Petrisor, I.G., Lai, H.-T., Kim, D., and Yen, T.F., (2004). Cupper Adsorption through Chitosan Immobilized on Sand to Demonstrate the Feasibility for In-Situ Field Decontamination Studies. Carbohydrates Polymers, 55 (3): 249-254.
Yen, T. F., (2001). In-Situ Stabilization of Subsurface Contaminants Using Microbial Polymers, Project Proposal for Environmental Science and Technology DOE-NETL, Morgantown, WV.
Zhao F., et. al. (2007), “Preparation of porous chitosan gel beads for copper (II) ion adsorption”. Journal of Hazardous Materials 147, pp.67-73.
中華民國行政院環境保護署土壤及地下水污染整治網。http://sgw.epa.gov.tw/public/index.asp
中華民國環保生物可分解材料協會網站。http://www.ebpa.org.tw/international.html
台灣省礦物局網站。http://twgeoref.moeacgs.gov.tw/GipOpenWeb/wSite/sp?xdUrl=/wSite/query/searchResult.jsp&mp=101&queryWord=%E8%87%BA%E7%81%A3%E7%9C%81%E7%A4%A6%E5%8B%99%E5%B1%80&queryField=fullText
林建宏, 謝維仁, 李慈莉, 陳偉鑫, 寇崇善, 施漢章(2001),“電漿離子佈植Cu/Pd 晶種無電鍍銅膜之退火效應研究”中華民國鍍膜科技研會暨國科會計劃研究成果發表會論文集,pp.181~186 。
陳谷汎、高志明(2002),台灣土壤及地下水環境保護協會簡訊,第五期,pp.3-5。
高雄市政府環境保護局,土壤及地下水污染整治網。http://www.ksepb.gov.tw/Website/LawKS_Show/448
楊正杰(2000),銅金屬與低介電常數材料與製程,毫微米通訊,第7卷第四期。
新光醫院腎臟科,(2006),重金屬污染事件頻傳有害國人健康─如何檢查及治療重金屬污染,新光醫訊第173期。
凱得生物科技公司網站。http://www.kaeder.com.tw/index.html
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊