|
[1]Robert E. Krebs & Carolyn A. Krebs. (2003). Groundbreaking scientific experiments - inventions and discoveries of the ancient world. Greenwood Publishing Group. 114 [2]Berthold Laufer. (1915). The Eskimo screw as a cultural-historical problem. American anthropologist, Volume 17( 1), 396-402. [3]Cardwell D. S. (2001). Wheels, clocks, and rockets: a history of technology. W. W. Norton & Company. 85–89 [4]K. Erkorkmaz & A. Kamalzadeh. (2007). High Bandwidth Control of Ball Screw Drives. CIRP Annals - Manufacturing Technology, Volume 55(1), 393-398. [5]Dan J. Gordon & Kaan Erkorkmaz. (2012). Accurate control of ball screw drives using pole-placement vibration damping and a novel trajectory prefilter. Precision Engineering, Volume 37(2), 308–322. [6]Guenter Pritschow & Niko Croon. (2013). Ball screw drives with enhanced bandwidth by modification of the axial bearing. CIRP Annals - Manufacturing Technology, Volume 62(1), 383-386. [7]林仁輝. (1999). 滾珠螺桿磨潤性能試驗機之建立以及磨潤行為 之測試分析. 成功大學. [8]魏進忠. (2003). 單螺帽雙圈滾珠螺桿在預負荷及潤滑作用條件 下運動機制與機械性能的理論分析及實驗印證. 成功大學. [9]錢乃岩. (2005). 滾珠螺桿使用的問題分析. 模具製造(9), 70-71. [10]蘇栢賢. (2005). 滾珠導螺桿振動噪音之研究. 清華大學. [11]陳穎宏. (2007). 線性滑軌與滾珠導螺桿之振動噪音特性研究. 清華大學. [12]陳彧士, 黃宜正. (2012). 利用振動量測訊號對中空滾珠導螺桿 之預拉特性的診斷分析. 中華民國振動與噪音工程學會論文集, 15-22. [13]胡守仁(譯). (2002). 希爾伯特的23個數學問題(The Hilbert Challenge)(原作者:Gray J.Jeremy). 天下遠見. 152-155. [14]J. N. Pandey. (1996). The Hilbert transform of Schwartz distributions and applications. Wiley-Interscience. 258-265 [15]Norden E. Huang, Zheng Shen, Steven R. Long, Manli C. Wu, Hsing H. Shih, Quanan Zheng, Nai-Chyuan Yen, Chi Chao Tung, Henry H. Liu. (1998). The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proceedings of the Royal Society A: Mathematical, Physical & Engineering Sciences, 454, 903-995. [16] Z. Zhao & Y. Wang . (2007). A New Method for Processing End Effect in Empirical Mode Decomposition. IEEE International Conference on Circuits and Systems for Communications ICCSC 2007, 841-845. [17]J. Cheng, D. Yu & Y. Yang. (2006). Research on the Intrinsic Mode Function (IMF) Criterion in EMD Method. Mechanical Systems and Signal Processing, 20(4), 817-824. [18]陳韋佑. (2007). 以希爾伯特-黃轉換法為GPS接收機抑制調頻 干擾. 台灣大學. [19]Jian-Jiun Ding. (2009). Time frequency analysis and wavelet transform class ppt. National Taiwan University. [20] Ryan Deering & James F. Kaiser. (2005). The Use Of a Masking Signal To Improve Empirical Mode Decomposition. Proc. IEEE Conf. Acoust. Speech and Sig. Processing (ICASSP), Volume 4, 485-488. [21] Zhaohua Wu & Norden E. Huang. (2009). Ensemble Empirical Mode Decomposition: A Noise-Assisted Data Analysis Method. Advances in Adaptive Data Analysis, Volume 1(1), 1-41. [22]楊鎧綸. (2010). 希爾伯特-黃轉換法之拍頻分析於結構損傷鑑 定上的應用. 高雄大學. [23]李俊耀, 林鴻奇與陳昱維. (2010). 應用希爾伯特-黃轉換於風 力發電機軸承偏移檢測. 崑山科技大學. [24]林鴻奇. (2010). 直流馬達之異常振動訊號檢測及辨識. 中原大 學. [25]C. E. Shannon. (1948). A Mathematical Theory of Communication. The Bell System Technical Journal, Volume 27, 379–423, 623– 656. [26]黃亞勤. (2011). 基於視線跟蹤技術的眼控滑鼠研究與實作.西 華大學. [27]Herbert Bay , Andreas Ess, Tinne Tuytelaars, Luc Van Gool. (2008). SURF: Speeded Up Robust Features. Computer Vision and Image Understanding (CVIU), Volume 110(3), 346-359. [28]H. Steinhaus. (1957). The division of physical body parts. Bulletin Polonaise Des Sciences, Volume 4(12), 801–804. [29]S. P. Lloyd. (1957). Least square quantization in PCM. Bell Telephone Laboratories Paper. [30]E.W. Forgy. (1965). Cluster analysis of multivariate data: efficiency versus interpretability of classifications. Biometrics, Volume 21, 768–769. [31] J. A. Hartigan, M. A. Wong. (1979). Algorithm AS 136: A k-Means Clustering Algorithm. Journal of the Royal Statistical Society:Series C, Volume 28(1), 100–108. [32]V. N. Vapnik, I. M. Guyon, and B. E. Boser. (1992). A training algorithm for optimal margin classifiers. 5th Annual ACM Workshop on Conference on Learning Theory, 144-152. [33] Corinna Cortes & V. N. Vapnik. (1995). Support-Vector Networks. Machine Learning, Volume 20(3), 273-297. [34] Jiaqi Wang, Xindong Wu, Chengqi Zhang. (2005). Support vector machines based on K-means clustering for real-time business intelligence systems. International Journal of Business Intelligence and Data Mining, Volume 1(1), 52-56. [35]林宗勳. (2006). Support Vector Machine簡介. 台灣大學. [36]曾定章. (2015). 影像處理講義第13 版. 中央大學資訊工程研 究所.檢自http://ip.csie.ncu.edu.tw/course/course.htm [37]謝志敏. (2007). 希爾伯特黃轉換簡介(Hilbert Huang Transform). 高雄海洋大學. [38]林彥宇. (2015). 知識天地-淺談電腦視覺與影像特徵點比對. 中央研究院週報, 第1532期, 1-5. [39]陳振雄(2010), 應用希爾伯特-黃轉換之訊號濾波研究, 科學 與工程技術期刊, 第六卷(1), 75-84. [40]Goldstein Herbert, Charles P. Poole Jr & John L. Safko. (1980). Classical Mechanics (3rd Edition). Addison Wesley, 46–47. [41]Mordecai Avriel. (2003). Nonlinear Programming: Analysis and Methods. Dover Publications, 34-41.
|