[1] http://zh.wikipedia.org/zh-tw/Wikipedia:%E9%A6%96%E9%A1%B5
[2] 張盛富、張嘉展,無線射頻通訊模組設計,全華書局,2007。
[3] 袁杰,高頻電路分析與設計(一)(二),全威圖書,民國八十八年一月。
[4] 袁帝文、王岳華、謝孟翰、王弘毅,高頻通訊電路設計,高立圖書,民國八十九年五月。
[5] H. T. Friis, “Noise figures of radio receivers,” Proc. IRE, vol. 32, no. 7, pp. 419–422, 1944.
[6] T. H. Lee, The Design of CMOS Radio-Frequency Integrated Circuits, 2nd ed., Cambridge University Press, 2004.
[7] B. Razavi, Design of Analog CMOS Integrated Circuits, McGraw-Hill, 2001.
[8] J. Borremans, P. Wambacq, C. Soens, Y. Rolain, and M. Kuijk, “Low-area active-feedback low-noise amplifier design in scaled digital CMOS,” IEEE J. Solid-State Circuits, vol. 43, no. 11, Nov. 2008.
[9] H. H. Hsieh, J. H. Wang, and L. H. Lu, “Gain-enhancement techniques for CMOS folded cascode LNAs at low-voltage operations,” IEEE Trans. Microw. Theory Tech., vol. 56, no. 8, pp. 1807–1816, Aug. 2008.
[10] I. R. Chamas and S. Raman, “Analysis, design, and X-band implementation of a self-biased active feedback gm-boosted common-gate CMOS LNA,” IEEE Trans. Microw. Theory Tech., vol. 57, no. 3, pp. 542–551, Mar. 2009.
[11] W. Zhuo, X. Li, S. Shekhar, S. H. K. Embabi, J. Pineda de Gyvez, D. J. Allstot, and E. Sanchez-Sinencio, “A Capacitor Cross-Coupled common-gate low-noise amplifier,” IEEE Transactions on Circuits and Systems – II: Express Briefs, vol. 52, no. 12, pp. 875–879, Dec. 2005.
[12] X. Fan, H. Zhang, and E. Sanchez-Sinencio, “A noise reduction and linearity improvement technique for a differential cascode LNA,” IEEE J. Solid-State Circuits, vol. 43, no. 3, pp. 588–599, Mar. 2008.
[13] X. Li, S. Shekhar, and D. J. Allstot, “Low-power gm-boosted LNA and VCO circuits in 0.18-μm CMOS,” IEEE International Solid-State Circuits Conference (ISSCC), pp. 534–615, Feb. 2005.
[14] J. S. Walling, S. Shekhar, and D. J. Allstot, “A gm-boosted current-reuse LNA in 0.18-μm CMOS,” IEEE Radio Frequency Integrated Circuits Symp., pp. 613–616, June 2007.
[15] J. Borremans, P. Wambacq, and D. Linten, “An ESD-protected DC-to-6 GHz 9.7 mW LNA in 90nm digital CMOS,” IEEE International Solid-State Circuits Conference, pp. 422–613, Feb. 2007.
[16] W. H. Chen, G. Liu, B. Zdravko, and A. M. Niknejad, “A highly linear broadband CMOS LNA employing noise and distortion cancellation,” IEEE J. Solid-State Circuits, vol. 43, no. 5, pp. 1164–1176, May 2008.
[17] H. Wang, Z. Yu, “A 1V 6mW inductor-less wideband LNA in 0.13-μm RF CMOS” IEEE Solid-State and Integrated-Circuit Technology (ICSICT), pp. 1504–1507, Oct. 2008.
[18] C. H. Liao and H. R. Chuang, “A 5.7 GHz 0.18-μm CMOS gain-controlled differential LNA with current reuse for WLAN receiver,” IEEE Microw. Wireless Compon. Lett., vol. 13, pp. 526–528, Dec 2003.
[19] C. M. Lo, S. F. Chao, C. C. Chang, and H. Wang, “A fully-integrated 5–6 GHz CMOS variable-gain LNA using helix-stacked inductors,” The European Microwave Integrated Circuits Conference (EuMIC), vol. 1, pp. 348–351, Sept. 2006.
[20] Y. S. Wang and L. H. Lu, “5.7 GHz low-power variable-gain LNA in 0.18μm CMOS,” Electronics Letters, vol. 41, no. 2, pp. 66–68, January 2005.
[21] R. Point, M. Mendes, and W. Foley, “A differential 2.4 GHz switched-gain CMOS LNA for 802.11b and bluetooth,” IEEE Radio and Wireless Conference, pp. 221–224, Aug. 2002.
[22] S. K. Alam, “A 1.5 V 2.4 GHz CMOS variable gain front-end for bluetooth and wireless LAN applications,” Asia-Pacific Microw. Conf., pp. 1136–1139, Dec. 2006.
[23] M. D. Tsai, R. C. Liu, C. S. Lin, and H. Wang, “A low-voltage fully-integrated 4.5–6 GHz CMOS variable gain low-noise amplifier,” The European Microwave Integrated Circuits Conference (EuMIC), vol. 1, pp. 13–16, Oct. 2003.
[24] W. M. Lim, J. G. Ma, M. A. Do, and K. S. Yeo, “A 5 GHz to 6 GHz integrated differential LNA,” ISCAS, 2005.
[25] H. Y. Liao, Y. T. Lu, Joseph D. S. Deng, and H. K. Chiou, “Feed-forward correction technique for a high linearity WiMAX differential low-noise amplifier,” RFIT2007-IEEE International Workshop on Radio-Frequency Integration Technology, Dec. 9–11, 2007, Singapore.
[26] S. V. Kishore, G. Chang, G. Asmanis, C. Hull, and F. Stubbe, “Substrate-induced high-frequency noise in deep sub-micron MOSFET’s for RF applications,” IEEE Custom Integrated Circuits Conf. (CICC), pp. 365–368, May 1999.
[27] C. Y. Cha and S. G. Lee, “A low power, high gain LNA topology,” International Conference on Microwave and Millimeter Wave Technology Proceedings, pp. 420–423, 2000.
[28] C. Y. Cha and S. G. Lee, “A 5.2 GHz LNA in 0.35-μm CMOS utilizing inter-stage series resonance and optimizing the substrate resistance,” IEEE J. Solid-Stat Circuits, vol. 38, no. 4, pp. 669–672, Apr. 2003.
[29] H. Fouad, K. Sharaf, E. El Diwany, and H. El Hennawy, “An RF CMOS cascade LNA with current reuse and inductive source degeneration,” IEEE 2001 Midwest Symposium on Circuits and systems, vol. 2, pp. 824–828, Aug. 2001.
[30] M. D. Wei, S. F. Chang, and Y. C. Liu, “A low-power ultra-compact CMOS LNA with shunt-resonating current-reused topology,” The European Microwave Integrated Circuits Conference (EuMIC), pp. 350–353, Oct. 2008.
[31] 張峻瑋,利用基體偏壓與轉導提升技術之 CMOS 射頻可調增益低雜訊放大器設計,國立中正大學電機工程研究所碩士論文,民國九十八年。[32] 黃智勇,3.5 GHz CMOS偶次諧波直接降頻接收機之設計,國立中正大學電機工程研究所碩士論文,民國九十八。